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Preface

On September 21-23, 1981, a workshop was held in
Rockville, MD, to discuss specific issues related to the
evaluation of data for risk assessment in reproductive
toxicology (including teratology). The workshop was
sponsored by the Interagency Regulatory Liaison
Group (IRLG) and was organized by the IRLG Repro-
ductive Toxicity Risk Assessment Task Group.t The
Task Group’s original charge was to develop criteria to
support the consistent interpretation and use of repro-
ductive and teratology data in the assessment of human
risk by federal regulatory agencies. Early in the delib-
erations of the Task Group, it became obvious that a
number of issues important to risk assessment were not
well addressed in the literature. From these delibera-
tions and from comments in response to a notice of the
Task Group's work plan in the Federal Register (1), the
workshop was convened to address specific issues that
could influence the overall basis for policy-setting in
reproductive toxicity risk assessment.

*Editors: Carole A. Kimmel and Gary L. Kimmel, National Cen-
ter for Toxicological Research, Food and Drug Administration, Jef-
ferson, AR. Present address; Reproductive Effects Assessment
Group, U.S. Environmental Protection Agency, Washington, DC;
and Vasilios Frankes, Office of Health Affairs, Food and Drug
Administration, Rockville, MD. Present address: Enviren Inc.,
Washington, DC.
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Ann B. Brown (U.8. Department of Agriculture, Washington, DC);
Kathleen M. Burke (U,S, Environmental Protection Agency, Wash-
ington, DC); Jerry Chandler (National Institute of Occupational
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Drug Administration, Washington, DC};, William Farland (U.S. En-
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istration, Rockville, MD); Marilyn Wind (Consumer Product Safety
Comnmission, Betheada, MD).

The workshop was organized into six workgroups,
each of which was given a specific area to address. Two
worlkgroups, one in teratology and one in male and fe-
male reproductive toxicology, considered the animal
and human endpoints which are useful for human re-
productive risk assessment; e.g., the comparability of
endpoints across species, the relationship of various
endpoints to one another, the significance of transient
effects, the relationship between maternal and fetal tox-
icity, the sensitivity of endpoints, and the endpoints
which can be monitored in human epidemiology studies.
Two other workgroups, again one in teratology and one
in male and female reproductive toxicology, discussed
the information available on mechanisms of action and
its use in the interpretation of experimental data and
risk assessment; e.g., the use of mechanistic data to
help explain interspecies variation in response and to
allow for development of more appropriate models for
extrapolation of animal data to humans, the information
on geneftoxicant interaction that might be useful for
predicting risk, and the early indicators of toxicant ef-
fect that might be used to predict adverse outcomes. A
fifth workproup addressed the evidence that can be
gained from pharmacokinetic studies in estimating po-
tential reproductive and developmental risk; e.g., the
process by which pharmacokinetic data can assist in
choosing the appropriate species for testing and esti-
mating risk, in selecting appropriate dosing regimens,
in defining the target for exposure, in predicting thresh-
olds, and in relating exposure to critical or sensitive
times in development or in the reproductive cycles. The
sixth workgroup was asked to address the procedures
available for assessing risk from available human and
animal data including: qualitative evaluation of study
design and data, e.g., internal consistency of data, evi-
dence of a dose-response relationship, and reproduci-
bility of effects in muitiple species; and quantitative
evaluation of data, e.g., statistical procedures and math-
ematical modeling for low dose extrapolation versus the
use of safety factors. The participants in each of the
workgroups were selected with the aim of achieving a
balanced discussion among représentatives from aca-
demia, industry, and government.

The workshop provided a valuable forum for the
expression of diverse scientific opinions and each work-
group provided a thoughtful evaluation of the difficult
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issues they were asked to address. The panel chairper-
sons were asked to draft a document summarizing their
deliberations which was then reviewed by members of
the workgroup following the meeting. With the dis-
banding of the IRLG, there were a number of delays
in finalizing the reports, but since all eontained valuable
insights and information which remain state-of-the-art,
the Commissioner of the Food and Drug Administration
decided to pursue the publication of the reports under
the auspices of the FDA, The reports here represent
updated versions of the original reports. They are not
meant to be all-encompassing or to be a thorough review
of the literature, but rather to state the consensus of
opinion for each workgroup on the specific issues they
were asked to address concerning use and interprets-
tion of data for risk assessment.

Several other workshops and symposia have ap-
peared since the IRLG workshop and may be consulted
for more detailed information on methods and testing
procedures (2-4). Recently, the FDA has completed a
report detailing the requirements and recommendations
each FDA Center has for studies to produce data in
reproductive and developmental toxicology. In addition,
the U.S. Environmental Protection Agency (EPA) has
published proposed guidelines for risk assessment for
developmental toxicity (4) and plans the development
of guidelines for male and female reproductive toxicity
in 1986. Another interagency group, the Interagency
Risk Management Council (IRMC), is currently work-
ing to develop guidelines that can be used by all regu-
latory agencies for risk assessment in reproductive and
developmental toxicity. The reports of the IRLG work-
groups were very useful in the development of the EPA
guidelines, and we hope they will continue to assist
regulatory agencies in developing risk assessment pol-
icies as well as point to areas lacking in adequate knowl-
edge so that research efforts ecan be developed to ad-
dress these needs.

We would like to acknowledge the sponsorship of the
Interagency Regulatory Liaison Group and the Food
and Drug Administration which was the lead agency for
this effort. We are indebted to the chairpersons of the
workgroups for their success in focusing the discussions
and developing the reports. All of the participants are
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of California, Davis, CA); Robert Hill (Syntex Research Ine., Palo
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CT); Granville A. Nolen (Proctor and Gamble Company, Cincinnati,
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MD); James L. Schardein (International Research and Development
Corporation, Mattawan, MI);, Robert E. Staples (E. 1. duPont de-
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to be commended for their enthusiasm throughout the
sessions which added immeasurably to the success of
the workshop. We would like to recognize especially
Ms. Janet Cunningham, Ms. Tina Sykes, Ms. Cynthia
Hartwick, Ms. Rose Huber, and Ms. Tonya Richardson
for their excellent clerical efforts without which the re-
ports could not have been completed. Also, we would
like to thank Dr. John F. Young and Dr. William Slikker
Jr, for their assistance in editing and completing this
document.

Workgroup on Endpoints of
Teratogenicity (Developmental
Toxicity)*

Introduction

In addressing questions posed under the heading “ter-
atology,” it is essential to identify direct effects of a test
agent on the conceptus from indirect effects on the preg-
nant female. That is, to distinguish clearly the adverse
effects on the products of conception from effects on
specific adult target organs either directly or indirectly
necessary for reproduction. This latter aspect is covered
by the workgroup on Reproductive Endpoints and will
not be discussed further here. Furthermore, before one
can clearly discuss adverse effects on the conceptus, it
is important to place the necessary terminology into an
understandable context consistent with contemporary
understandings. Both semantic and regulatory confu-
sion exists regarding the terms, “teratogenicity” and
“teratogen.” Their meanings have shifted in some quar-
ters in recent years, and the range of meanings from
the strictest to broadest interpretations is now confus-
ing to the point of use being counterproductive to un-
derstanding. In view of this, it was concluded that end-
points of toxicity applicable to the conceptus would best
be referred to under the general term “developmental
toxicity,” which includes, as cone of its parts, terato-
genicity by its strictest definition; i.e., the production
of grossly abnormal offspring in a specific experiment.
However, any consistent dose-related adverse effect on
any aspect of development would be worthy of consid-
eration provided it occurred above the threshold of ef-
feet and background incidence of such effects in com-
parable control animals. The principal manifestations of
disrupted developmental biology are: death of the con-
ceptus, gross structural malformations, functional im-
pairment, and altered growth and/or developmental
patterns. These are not necessarily listed in a hierar-
chical order but, as far as can be determined, admin-
istration of a material at dosages capable of increasing
the incidence of frank malformations usually will pro-
voke other adverse effects as well. These effects can
inelude any or all components of a spectrum of effects,
i.e., fetal death, alteration in general growth pattern,
inereased incidences of minor alterations and develop-
mental variations which may either be permanent or
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transient in nature.

Adverse effects on a developing system do not nec-
essarily occur as a striet continuum of responses in the
sense that one type leads to the next or that one is
invariably produced at a lower dose than another, but
types of response can sometimes be viewed as a spec-
trum of effects. There are examples where breaks in
the continuity of the spectrum have been observed, e.g.,
increased incidence of fetal death without an increase
in the number of malformations (6). But, the possibility
that closer examination would reveal such continuity,
e.g., maiformation preceding death (7), cannot be ex-
cluded in routine safety evaluations. Experimental
studies can be designed to resolve questions such as
this, but they cannot be considered essential for the
detection of developmental hazards or estimation of risk
because both in uiero death and malformation can be
valid indicators of developmental toxicity. A major fac-
tor in evaluating the relevancy of any developmental
toxicity endpoint assay is the proximity of the dose caus-
ing effecis in the conceptus to that dose causing ma-
ternal toxicity. This issue is addressed in great detail
later in this report.

While it may be assumed that most test agents will
not increase the incidence of malformations without alse
provoking other changes, the reverse argument may
not apply. Indeed, growth retardation, as indicated by
retarded weight and/or ossification, or inereased inci-
dences of minor morphological variations often occur
without a corresponding increase in malformations. This
is more common among materials primarily toxic to the
dam than it is for agents with the conceptus as their
primary target, i.e., substances which cause develop-
mental toxicity at a small fraction of the dose toxic to
an adult. Similarly, observation of a reduced degree of
skeletal ossification (evidenced by alizarin staining) is
usually interpreted as being related to general growth
retardation, but each instance requires careful exami-
nation and cautious interpretation.

Comparison of Endpoints in Humans and
Animals

The developmental toxicity endpoints encountered in
experimental animals do not and should not be expected
necessarily to mimic those observed in humans exposed
to the same toxicant. Similarly, the specific agent-re-
lated endpoints in humans are not always reproduced
in experimental animals (8). However, adverse devel-
opmental effects have been detected in gne or more
species of laboratory animals as a result of exposure to
essentially all chemicals or physieal factors known to be
developmental toxicants in humans. The absence of ab-
solute unformity of response is not surprising when one
considers the many critical differences which exist be-
tween the conditions of human exposure and those for
animal models. For example, differences in dosage, pla-
centation, metabolism, pharmacokinetics, critical pe-
riods of development, duration of gestation, ete. (9) can

be expected to affect expression of developmental tox-
icity. Nevertheless, the production of adverse devel-
opmental defects in animal models lends support to the
current view that such findings in experimental animals
identify most chemicals that are potentially hazardous
to human development (10,11). Since so many test
agents manifest developmental toxic signs at, or very
near to, the maternal maximum tolerated dose (MTD),
one expects to encounter more effects in experimental
animals than in man, where exposures tend to be less
and where epidemiologic endpeint assays of toxicity are
more difficult to ascertain and specifically relate to an
agent.

Levels of Concern Regarding Transient
Effects

In routine tests for developmental toxicity, altera-
tions of questionable biologic importance such as de-
velopmental delay are sometimes observed. In consid-
ering the significance of these or any other possible
endpoints of developmental toxicity, the experimental
data should be carefully examined for evidence of ma-
ternal toxicity, For example, a transient delay in fetal
ossification or patterns thereof, produced only in fetuses
of dams who are themselves manifestly affected by the
treatment, are of questionable significance. In marked
contrast, a permanent alteration in fetal development
at some small fraction of the exposure needed to produce
overt materna! toxicity would be of marked significance.
To evaluate accurately the significance of some findings
in relation to risk assessment, it may be necessary in
some instances to demonstrate that a developmental
delay is truly transient, and that the repair and innate
self-regulation processes of the conceptus have not been
exceeded sufficiently to interfere with normal function.
An important area of future basic research would be
determination of whether the offspring are more vul-
nerable to a second insult (by the same or different
agents) during the period of a transient effect.

Relationship between Adult and Develop-
mental Toxicity

A major goal of testing for developmental toxicity is
to determine whether a test substance is a greater haz-
ard to the conceptus than it is to the pregnant female
or adult male. As a general rule, an agent that causes
detrimental effects in the conceptus at a dose level that
also adversely affects the pregnant animal is eonsidered
to be of less concern and is a lower priority for detailed
safety evaluation than an agent that detrimentally af-
fects the coneeptus at a dose level that is not harmful
to the pregnant animal (12,13). There are notable ex-
ceptions, however, and in the human, special consid-
eration should be given to agents considered acceptable
by the mother (14,15) (e.g., smoking, alcohol consump-
tion, life-saving drugs, employment in a high-exposure
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environment). Even though adverse effects are pro-
duced in hoth the adult and the conceptus at the same
general dosage, the adult may recover from the toxic
exposure, but the embryo may be irreparably altered.

In evaluating the degree of risk to the human con-
ceptus, one must carefully consider a number of differ-
ences that exist among animal species and between an-
imals and man. These include genetics, metabolism,
anatomy, physiology and other so-called “inherent” in-
terspecies differences in development, or the anatomy
and physiology of the placenta between experimental
animals and man (76}. These inherent factors can infiu-
ence the outcomes of developmental toxicity testing.
They need to be identified and their influence on test
results should be clarified both for general influence and
for modifying effects on the results produced by indi-
vidual substances.

Interpretation of an Increased Incidence
of Spontaneously Occurring Defects and
Minor Variations

It is recognized that in all animal species there is a
detectable incidence of spontaneously oceurring defects
(27). Exposure- or dose-related increases in such defects
in test animals are considered as manifestations of de-
velopmental toxieity, and are evaluated as being due to
the test agent. Such increases are, for purposes of safety
evaluation, as relevant as are dose-related increases in
any of the other four classes of developmental toxicity
endpoints.

Inereased incidences of developmental variations
(e.g., skeletal), with or without associated frank gross
anatomical malformations, also may be present; they
are interpreted to be indicators of developmental tox-
icity (18,19) when elicited in a dose-related manner at
incidences significantly above comparable controls. If
they are produced by exposures markedly below those
inducing adult toxicity, the test substance should be
considered as a potential hazard to the conceptus. How-
ever, some variation may represent temporary retar-
dation of growth, development or degree of ossification,
and the effect may be readily reversible with continued
maturation (20). Such findings may merit less concern
than would those of a more lasting nature.

Postnatal Assay of Developmental Toxicity
Endpoints

Tests for developmental toxicity should include post-
natal endpoints that may be altered prenatally or during
early postnatal development. The assessment of these
endpoints can be incorporated into reproduction and/or
developmental toxicity studies (21). The endpoints se-
lected for evaluation will vary depending upon the na-
ture of the test agent being tested, its use, and the
amount of expected or actual human expesure. Reliable
endpoints include survival, growth rate to maturity,

timing of selected developmental landmarks, feed con-
sumption, efficiency of food utilization, and reproductive
capability (22). Histomorphologie, hematologic, and
clinical chemistry data may also be useful in some in-
stances (23). As they become validated, additional end-
points of developmental toxicity may include measure-
ments of neurobehavioral status, immunologic,
respiratory or gastrointestinal function, or develop-
mental enzyme patterns (21), Studies of the postnatal
animal throughout its lifespan should be reserved for
special products and/or problems, since they seldom
yield information other than data relevant to evalua-
tions of chronic toxicity, lifespan, or incidence of car-
cinogenicity.

Data Evaluation and Interpretation

It is appropriate to group responses into some overall
indicator of developmental toxicity, or to consider the
incidence of “normal” offspring. Grouping of data from
various types of endpoints has been done by a few in-
vestigators (24), and the interpretation of data may dif-
fer depending on the way in which data are grouped
(25). The most appropriate method for evaluating data
from experimental studies is yet to be determined, and
this problem should be addressed by further study to
aid the regulator in making appropriate assessments of
risk for human development.

Epidemiologic Endpoints of Develop-
mental Toxicity

Developmental toxicity endpoints have been moni-
tored inadequately by epidemiologic studies. To date,
structured or formalized epidemiologic monitoring has
not been the initial source of information revealing a
developmental toxicity endpoint due to a specific agent,
although recent expansion of epidemiologic studies of
birth defects is increasing the probability that they will
be able to do so in the future. Though aectual canse and
effect relationships sometimes may be difficult to es-
tablish, developmental toxicity endpoints in humans re-
lated to specific agents have been identified primarily
by case reports. However, because the value of case
reports in identifying human developmental toxicants
has not been fully appreciated, case reporting has not
been fully utilized. Identification of an endpoint depends
on the uniqueness of the exposure and the uniqueness
of the event, and association of exposures with events
which are not unique or unusual is much more difficult.
Observation of only a few unique events may be suffi-
cient to establish an association (26), but the study of
cohorts of exposure can only identify marked develop-
mental hazards such as thalidomide.

In summary, new levels of understanding of the
meanings and possible utility of developmental toxicity
safety evaluations are emerging. They are predicated
on classic prineiples of developmental biology and have
evolved from concepts formulated by the pioneers in
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experimental teratogenesis. Precision of terminology
regarding the endpoint manifestations of altered de-
velopment and a degree of concensus regarding its ap-
plication constitute a major step in data interpretation.
A pragmatic perspective on the concept that most any-
thing can injure development if the dose or exposure
level is high enough is achieved when developmental
toxicity is related to adult toxicity. The determination
of whether the conceptus is the “target” of a specific
test agent or is only at risk secondary to, or concomitant
with, adverse effects on the mother is a useful means
for initial identification of developmental hazards (27).
This allows a means for more accurately assessing risk.
In addition, cross-species extrapolation can be made
with even greater confidence when interspecies differ-
ences and/or similarities of pharmacokinetics are ex-
amined both for in ufero and for postnatal develop-
mental effects.

Workgroup on Mechanisms of
Teratogenicity*

Introduction

The mechanism of action of a teratogen, in the strict-
est sense, is the fundamental physical or chemical pro-
cess which initiates a sequence of perturbed develop-
mental events leading to an observable toxic response.
In a broader sense, mechanisms of action have been
defined at various levels: biochemical (molecular or sub-
cellular), cellular, tissue, the embryo-placental unit, and
the pregnant dam. In the determination of the compo-
nents of an observed response, discrete or multiple
mechanisms of action should be considered along with
various levels of repair of regulation. Teratogenesis is
a complex, poorly understood process, potentially in-
volving perturbations of maternal-fetal, tissue—tissue,
cell-cell, nuclear—cytoplasmic, and molecular interac-
tions. Consegeuntly, the mechanisms by which most
known teratogenic agents act during embryonic or fetal
development are only beginning to be defined. Hence,
it may be tenuous to use such incomplete information
as the basis for risk assessment of suspected hazardous
agents given the complex nature of the information
available at present.

Nevertheless, there are distinet advantages to be ac-
crued from studies on mechanisms and these will even-

*Devendra Kochhar, Chairperson (Thomas Jefferson University,
Philadelphia, PA; Marilyn Wind, IRLG Contact (Consumer Product
Safety Commission, Bethesda, MI)); John DeSesso (Mitre Corpora-
tion, McLean, VA); Elaine Francis (US Environmental Protection
Agency, Washington, DC); Casimer Grabowski (University of Miami,
Coral Gables, FL); Gary L. Kimmel (National Center for Toxicological
Research, Jefferson, AR); Guillermo Millicovsky (University of North
Carglina, Chapel Hill, NC); William Secott, Jr. (Childrens Hospital
Research Foundation, Cincinnati, OH); Richard Skalko (East Ten-
nessee State University, Johnson City, TN); John Strange (Franklin
Research Center, Silver Spring, MD); Ann Wilke (Food and Drug
Administration, Rockville, MD); Ernest Zimmerman (Childrens Hos-
pital Research Foundation, Cincinnati, QH),

tually help in the evaluation, prediction, and assessment
of risks. Through studies on mechanisms, a number of
concepts have been clarified. These are mentioned
briefly below, along with some examples, wherever ap-
propriate,

Critical Periods in Development and
Resultant Syndromes

Environmental agents with known pharmacological
actions have been used extensively as probes into em-
bryonic or fetal development in laboratory animals.
Chemicals such as alkylating agents or inhibitors of
DNA or protein synthesis, that have cytotoxic activity
have been employed to determine the critical time of
embryonic organ susceptibility as well as the progres-
sive susceptibility of various differentiating cells within
a single discrete organ system. Limb development, for
example, was found to be altered by exposure of mouse
embryos to cytosine arabinoside, a potent cytotoxic
drug, in a manner that reflected sensitivity along the
proximal-distal axis of the limb. Thus, either upper,
middle or distal (digits) segments were missing upon
exposure to the teratogen at progressively older stages
of development (28). Chemicals with either a narrow or
a well-documented single biochemical site of action have
been valuable in defining the role of specific endogenous
substances in organogenesis. B-Aminopropionitrile, a
lathyrogen that specifically inhibits collagen erosslink-
ing, induces a high percentage of cleft palate in rat
embryos when administered during a short period of
time prior to palatal shelf elevation. This finding indi-
cates the importance of this protein and the time when
synthesis is critical for normal palatal development (29).
Finally, both broad and specific agents have been used
to investigate interactions which occur between devel-
oping organs and tissues. Because abnormalities in-
duced by different classes of compounds can resuit in
discrete organ deficits or syndromes, i.e., the fetal al-
cohol syndrome, fetal hydantoin syndrome, diamox
(acetazolamide) syndrome in animals, an understanding
of the relationships of normal inter- and intra-organ
developmental seqeunces as weill as the ability of ref-
erence teratogenic compounds to interfere with these
processes can lead to insights regarding species differ-
ences in teratogenie response as well as the teratogenic
potential of new chemicals.

Dose Response

The study of the effects of increasing dosages of ter-
atogenic agents has led to an improved understanding
of how increased dose influences possible embryotoxic
outcomes and how these outcomes putatively relate to
one ancther. The four manifestations of embryotoxic
responses are functional deficits, growth retardations,
malformations and death of the embryo/fetus (30). One
way in which the four manifestations of embryotoxicity
may be related to each other is diagrammed in Figure
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Range  /
INCREASING DOSAGE - o
Figure 1. Diagram of the toxic manifestations shown by the em-

bryos and the maternal organisms as dosage of a teratogenic agent
increases. From Wilson (30) used with permission of Academic
Press.

1. In this scheme, a low dosage of a given teratogen
may elicit no observable embryotoxic response; with
increasing dosage a teratogenie or other embryotoxic
response may be observed and be considered the
“threshold” dose for that response under the experi-
mental conditions used. Further increases in dose may
result in more severe embryotoxicity and/or maternal
toxicity.

An example of an agent which has been studied for
demonstration of a dose-response effect is hydroxy-
urea. Scott et al. (31) administered hydroxyurea to
pregnant rats on gestational day 12. The lowest dose
(250 mg/kg) used produeed no malformations. Inter-
mediate doses (500 or 750 mg/kg) produced increasing
amounts of fetal malformations; the highest dose (1000
mg/kg) resulted in a higher incidence of embryoethality.
In addition, Butcher and colleagues (32) have demon-
strated behavioral deficits in rat pups whose mothers
were treated with low levels of hydroxyurea (375 mg/
kg) at the same time in gestation (day 12). A similar
speetrum of embryonic responses at increasing doses
has been obtained with other agents, including cytosine
arabinoside (28,33).

Species/Strain Differences

. Species and strain differences in teratogenic response
are the rule rather than the exception. Studies of mech-
anisms of teratogenie action in the broadest sense have
helped us to understand that basic species differences
can oceur in the mother, the placenta, or in the embryo
itself,

Mother. Inthe mother, veratrum alkaloids produce
a syndrome of craniofacial defects when administered
to sheep during early gestation. When they were ad-
ministered to rats or rabbits during an equivalent ges-
tational stage, these agents were totally ineffective,
However, if gastric contents were made alkaline, these
alkaloids induced a similar array of structural malfor-
mations in rabbits (34).

Chernoff (35) has shown that different strains of mice
respond to ethanol with different degrees of develop-
mental toxicity. He has demonstrated a close positive
correlation between maternal blood level of ethanol and
developmental toxicity between strains and further so-
lidified this idea by demonstration of a negative corre-

lation between the aleohol dehydrogenase activity and
developmental toxicity.

Wilson et al. (36) demonstrated that aspirin is more
teratogenic in rats than in monkeys. Following admin-
istration of equivalent dosages based on maternal
weight, total maternal plasma levels of the major me-
tabolite, salicylic acid, were the same in both species.
However, the amount of salicylic acid in the embryo
was mueh greater in the rat and, in either species, levels
in the embryo compartment of salicylic acid were nearly
identical to the level of unbound salicylic acid in mater-
nal plasma. Thus, plasma binding in the mother was
held responsible for the difference in species response
to aspirin.

Placenta. Trypan blue is teratogenic in rodents
which possess and utilize a yolk sac placenta during
early organogenesis. The yolk sac provides histiotrophic
nutrition during early rodent development, and trypan
blue interferes with this process and is thought in this
way to induce abnormal development (87). Species with-
out a yolk sac placenta are presumably insensitive to
trypan blue, perhaps due to a lack of inhibition of nu-
trition from sources other than the yolk sac.

Embrye. Different strains of mice respond with dif-
ferent frequencies of cleft palate to glucocorticoids. The
level of glucocorticoid receptors in palatal cells corre-
Iates with cleft palate frequency in most mouse strains
(38,39).

Carbonic anhydrase inhibitors in most strains of rats
and mice produce a unique limb malformation syndrome
characterized by a postaxial reduction deformity of the
digits (40). For many reasons, the inhibition of carbonic
anhydrase is thought to be responsible for this unusual
malformation syndrome (41). Monkeys are insensitive
to the teratogenic effects of these agents. Measurement
of earbonic anhydrase activity during the gestational
stage of presumed sensitivity indieated that embryos of
this species have little if any carbonie anhydrase and
this factor could be the basis of species insensitivity to
those drugs which are thought to act by inhibiting this
enzyme (42).

Structure/Activity Relationship

A number of agents that have struetural similarity to
thalidomide have been tested for teratogeniec activity in
appropriate species. Thus, we know many of the struc-
tural requirements for thalidomide teratogenesis. This
knowledge has been useful in identifying potentially
dangerous drugs and chemicals in our environment such
as glutethimide (Doriden), Captan, and Folpet. We now
know that the agents that do not possess the requisite
structural specificity are not able to induce thalidomide-
like teratogenicity. Conversely, new drugs have been
gynthesized which retain the favorable sedative prop-
erties but have abolished the teratogenic properties of
thalidomide, a eoncept which could be helpful with other
teratogens.
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Drug Interactions

When a eombination of agents is applied to a pregnant
animal, the results can be either protective, synergistie,
or have no additional effect. An example of synergism
reported in the study of Ritter et al. (48) is that treat-
ment of pregnant dams with both an inhibitor of DNA
synthesis and an inhibitor of RNA synthesis produced
a greater incidence of developmental toxicity than
either regimen alone. In contrast, treatment of preg-
nant dams with two different DNA synthesis inhibitors
did not produce any additive or synergistic effect. Other
examples of synergism include treatment of pregnant
rabbits with compound 4880 and hydroxyurea (44) and
treatment of pregnant rats with caffeine and acetazol-
amide (45).

Examples of protection include the cotreatment of
pregnant rats with exogenous pyrimidines (especially
deoxycytidine) and hydroxyurea or cytosine arabinoside
resulting in virtually complete protection (28,46). Oth-
ers have used folic acid “rescue” to protect or activate
the embryotoxic effect of methotrexate and other folate
antagonists (47). The antioxidant propyl gailate has
been reported to ameliorate the teratogenic effects of
hydroxyurea (}8).

Summary

Since no well-defined mechanism of teratogenic action
of any agent is known at present, it is difficult to predict
the risk entailed from exposure to a suspected devel-
opmentally toxic agent. However, chemicals which in-
terfere with nueleic acid integrity have been studied
well enough to allow one to make reasonable predicta-
bility of risk. For other classes of compounds, such as
CNS depressants and vasoactive agents, one could rea-
sonably predict their teratogenie potential on the basis
of empirical {(non-mechanistic) observations. Reliable
rigk assessment requires further studies on the mech-
anisms of action of agents at all levels (biochemical,
cellular, tissue, embryo-placental unit and pregnant
dam) before this factor can be used as a basis for realistic
predictability.

The study of mechanisms is important in our under-
standing of the degree of concordance between test an-
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imals and man and, therefore, should be able to improve
the extrapolation of test findings to potential toxicity to
the human conceptus. The eoncepts that have been re-
viewed are characteristic of issnes within teratology
that have been clarified through mechanistic studies.

Understanding developmental sequences, their at-
tendant timings, and the mechanism by which terato-
gens perturb the process, should permit both critical
and safe periods to be identified which would allow more
effective asgessment of teratogenic risk.

Teratogenic responses to a compound may vary ac-
cording to the route of exposure. An understanding of
the mechanisms involved in activation, inactivation, and
pharmacokinetics may allow the optimal delivery of a
compound to populations which require treatment in
pregnancy and thus minimize teratogenic risk.

The understanding of structure-activity relationships
coupled with a better understanding of the ecompound’s
mode of action in the maternal and embryo/fetal orga-
nisms should allow for the development of pharma-
ceutical and other compounds which would pose a lower
risk to human females during pregnancy.

Model systems should be devised to determine the
causes of teratogen-induced malfermations. Human
populations which are at high risk for general teratogens
and for specific teratogens te which they are exposed
may be identified. Current research in recombinant
DNA technology offers the promise of altering gene
structure in human offspring. If underlying adverse ter-
atogenic responses in a population can be identified,
then it may be feasible to alter gene structure to prevent
the conseqeunce of inherent error.

Workgroup on Endpoints of
Reproductive Toxicity*

Introduction

Reproductive toxicity deals with the effects of toxi-
cants on adult reproductive function and development
of the offspring which may be produced by alteration
of 2 wide range of processes in either the female or
male. These processes include those associated with the
primary and accessory sexual organs and with fertiliz-
ation, as well as those which impact more indireetly on
normal reproductive function; e.g., neuroendocrine con-
trol, general physiological and psychological health, and
nutrition. Following fertilization, processes associated
specifically with pregnancy are also vulnerable; e.g.,
implantation, placental formation and function, concep-
tal development, and parturition and lactation. The fo-
cus of this workgroup was on the entire reproductive
process, although coverage of the developing embryo/
fetus was limited, since this was the purview of another
workgroup. To detail each of the vulnerable processes
and how they may be altered is beyond the scope of this
discussion. Several references are available which have
discussed these in greater detail (2—4). Specific exam-
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ples have been included where they provide clarity both
in this report and in that-on mechanisms of reproductive
toxicity.

Within each of the processes of normal reproductive
funetion, the various events which may be altered and
lead to a toxie response can represent a continuum, in
the sense that various endpoints are integrally related
to other biologieal processes that may be the specific
target of toxicity. For example, an agent may alter male
reproductive funetion by affecting spermatogenesis di-
rectly in the testis or by affecting hormone production
at the level of the pituitary/hypothalamus, or indirectly,
by altering normal function of the sex accessory glands.
In any case, the ultimate result is the lack of fertile
sperm interacting with the oocyte, and consequently,
reproductive failure. Therefore, it is important that
these continuums are recognized in establishing and as-
sessing reproductive endpoints in order to appreciate
the complexity of a particular response and better un-
derstand their applicability in assessing risk.

Specific Endpoints

Ag there are a wide range of reproductive processes
that may be altered following insult, there are a com-
parable number of endpoints which potentially can be
used to evaluate toxicity. Ultimately, the most sensitive
endpoints may reside in or be closely associated with
the target of insult. Currently, however, risk assess-
ment must rely on data from laboratory testing or from
epidemiological studies, which for the most part assess
only the final outcome of the reproductive process. The
following outlines some of the endpoints currently in
use or under development for reproductive toxicity
screening

In the Male. Semen characteristics are parameters
including sperm count, metility and morphology, and
seminal volume. They are useful endpoints for charac-
terization if techniques are standardized relative to ab-
stinence time, collection and counting procedures, ete.
Nevertheless, certain limitations of the parameters
must be recognized, both biological and sociological. For
example, the number of motile sperm is g sensitive in-
dicator of human fertility. However, this may be a less
sensitive indicator in laboratory animals, due to their
tendency to produce sperm in considerable excess over
that required for normal reproductive function. In ad-
dition, metility and morphology are generally subjective
evaluations, and controlled techniques for uniform scor-
ing are only beginning to be established. Human sub-
jects may be reluctant to participate or be unwilling or
unable to satisfy the requirements of the study design.

In vitro oocyte penetration using zona-free hamster
ova and human sperm (49), appears to be a highly sen-
sitive and specific assay for male fertility in the popu-
lation tested. It is the only functional measure available
for sperm-egg interactions and may reflect subtle
changes in the standard semen parameters by indicating
reduced penetration of eggs. However, it is perhaps

most meaningful in indicating subtle changes in sperm
function (ability to fuse with and penetrate the ovum)
in the absence of any change in the standard semen
parameters. Additional validation of the technique is
required. Technical expertise required for the test cur-
rently prohibits its widespread use.

Preliminary data indicate that there may be marker
enzymes in the acrosome with applicability to fertility
testing. These enzymes may be necessary for sperm
penetration into ova. However, these tests are in the
early developmental stage.

New tests using flow cytometry and fluorescent stain-
ing (F-body staining) of chromosomal changes (chro-
matin stability and nondisjunetion) may provide infor-
mation on genetic or chromosomal damage in sperm.
These methods have not yet been validated as predic-
tors of fertility or production of viable offspring.

Endocrine profile tests determine the blood levels of
pituitary hormones which exert a control over testicular
funection, and of testosterone which conversely exerts a
negative feedback on the pituitary. Thus, these tests
may indicate the level of alteration in the pituitary-
testis axis. Presently, however, they demonstrate
changes in fertility only at extreme levels. Additional
comparison and validation are required before they ean
significantly aid a testing program.

Cervical mucous penetration is a functional test pri-
marily measuring sperm motility and the ability of
sperm to migrate through the cervix. The test is not
complicated and can be done quickly. It does not indicate
the fertilizing capacity of spertn, but focuses on sperm
transport. The test is only slightly better than standard
semen analysis in evaluating fertility.

In vivo fertility testing in laboratory animals includes
endpoints which are analogous to those oceurring in the
human, and they can provide an important indication of
reproductive toxicity. Nevertheless, species differences
(e.g., excess sperm production in animals, noted above)
limit data extrapolation to the human unless the test
design and data analysis adjust for these differences.
The uge of fertility as an endpoint in human studies has
been more retrospective and is limited by the low con-
ception rate in the human. Moreover, the couple is a
biological unit and therefore a defect or abnormality in
the female may mask or hinder detection of a problem
in the male. Thus, it often is difficult to identify the
infertile partner unless either partner has a prior his-
tory of fertility.

Tests designed to evaluate the outcome of pregnaney
focus on endpoints such as spontaneous abortion, birth
weight, live/dead births, birth defects, and neonatal de-~
velopment and survival. Such tests provide an overall
assessment of reproduction, including libido, fertility
and pre- and post-natal development. In laboratory an-
imals, the male contribution to a toxic response is not
easily established, since the female contribution cannot
be excluded entirely. It is also necessary to ensure that
the entire male cycle is considered in the treatment
period prior to cohabitation (usnally 60 days; should be
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80—90 days) and that a sufficient number of male animals
be tested. Actually, the current study designs give em-
phasis to the female (17,50). In the human, data are
often retrospective, and postnatal observations may not
be apparent for a year or longer. These measures may
be meaningful on a population basis but are not always
apparent or valid in individual cases; separation of the
male and female contribution to the reproductive dys-
function requires careful study design. A more detailed
discussion of approaches in human studies can be found
in the risk assessment report.

In the Female. Oocyte and follicular toxicity is a
quantitative assay in which oocyte and follicular number
are determined following agent exposure {51). The ex-
perimental animals, usually mice, are sacrificed at in-
tervals after exposure, and the ovaries are prepared
and examined mieroscopically, It appears that the assay
is more sensitive to exposure than standard fertility
endpoints, since a considerable reduction in oocyte/fol-
licular number must oeccur before fertility is actutely
altered. However, this procedure is extremely time-
consuming and requires an advanced level of expertise
both in technique and evaluation.

As in the male, endocrine profiles include the blood
levels of pituitary and gonadal hormones which exert
control over reproduction. Presently, there are both in
vivo and #n vitro approaches for measuring these hor-
mones individually. However, direct correlations be-
tween alterations in a specific hormone level and fertility
following agent exposure have not been established.
Other events important to overall reproduction (e.g.,
parturition and lactation) are also under hormonai con-
trol, and alterations in them could potentially be esti-
mated by measuring blood levels of specific hormones.
Nevertheless, the validity of this type of association has
not been demonstrated.

Endpoints which are derived from standard in vivo
reproduetion studies continue to be most accepted in
assessing reproductive toxicity (11,50). For example,
the fertility index represents matings which result in
pregnancies and indicates the ability of the female to
become pregnant. Viability and growth indices can be
indicators of agent-induced alterations in lactation,
postnatal nourishment or maternal care of the offspring.
Developmental landmarks such as vaginal opening and
onsel of the estrous cycle can also indicate alterations
in normal hormonal balance. As indicated above, these
test can provide important information relative to male
reproductive function.

Significance of Transient Effects

A number of factors, including drugs, fever, or stress,
are known to cause transient effects on several of the
reproductive parameters. But, an important concern
relative to risk assessment is the significance of such
transient effects. Transient changes (i.e., toxic mani-
festations of relatively short duration in which full func-
tional recovery occurs after cessation of exposure) by

definition may not have any major biological signifi-
cance; however, long-term or additive effects of tran-
sient changes are possible. Transient effects observed
in reproductive toxicity studies, e.g., temporary fluc-
tuations in sperm characteristics, fertilizing capacity,
or ovum production and transport, may represent one
point on the dose—response curve; higher exposure lev-
els may produce irreversible effects. Thus, such tran-
sient effects should be considered in the initial experi-
mental design, data collection and analysis. In general,
a defined approach to assessing the impact of transient
events is not available. For the most part, we still must
rely on good scientific judgment when estimating the
potential health hazard of an agent whose primary toxic
effects are transient.

Comparison of Endpoints in Humans and
Animals

Currently, the paucity of information for both exper-
imental animals and humans does not allow the corre-
lation of reproductive effects between species. There-
fore, any expected similarity of toxic responses will be
based primarily on general assumptions regarding the
similarity of biological processes. Certainly, many of the
reproductive processes described in the laboratory an-
imal appear to have correlates in the human. The basic
processes of gamete development and transport, fertil-
ization, and implantation are similar, as is overall neu-
roendocrine eontrol. The need for additional compara-
tive data is obvious. When exposures of humans to
potentially toxic substances have occurred, efforts
should be made to evaluate the effects by epidemiologic
studies (see below and report on risk assessment). How-
ever, because human exposure data are limited, we still
must rely primarily on animal studies. This points up
the importance of developing animal models for the hu-
man situation. In the absence of specific data to the
contrary, adverse effects in experimental animals
should be presumed to indieate a potential risk to human
reproduction.

Epidemiology

In order for epidemiological studies to be useful in
reproductive risk assessment, it is necessary to obtain
measurements of both exposure and health effects. Mea-
surements of exposure should include dose (several
doses if possible to establish a dose—response relation-
ship), route of exposure, duration of exposure, time of
exposure relative to conception, and health outcome of
interest. In human epidemiological studies, such infor-
mation may not be available, and estimates of dose may
have to be determined from biolegical monitoring data,
duration of employment, description of job duties, or
work area.

Tools that have been useful in assessing reproductive
endpoints in human epidemiological studies include use
of the questionnaire to obtain information on reproduc-
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tive outcome and potential confounding factors, physical
examination of the reproductive system of either parent
or examination of the produet of conception, laboratory
measurement (such as sperm count), and histopatho-
logical examination of the reproductive system of either
parent or the offspring.

Human epidemiological studies are subject to several
limitations. As noted previously, precise exposure in-
formation is more difficult to obtain for humans than in
animal studies. In addition, confounding factors cannot
always be excluded or controlled, making interpretation
difficult at best. Assessment of reproductive endpoints
is also affected by the necessity of voluntary partici-
pation, privacy considerations, religious ohjections, re-
liability of reporting and incompleteness of medical rec-
ords. Histopathological data (e.g., testicular biopsies or
fetuses in various stages of development) are also dif-
ficult to obtain. In spite of these limitations, epide-
miological studies are important in establishing a rela-
tionship between exposure and reproductive effects in
humans. A more detailed coverage of this area is pre-
sented in the report on risk assessment.

Workgroup on
Mechanisms of
Reproductive Toxicity*

Introduction

The mechanism of action of a reproductive toxicant
can be defined as the molecular interaction by which
that chemical perturbs an underlying reproductive or
developmental process. Although exact mechanisms
have not been precisely established for a variety of mor-
phologic, biochemical, or functional lesions resulting in
reproductive dysfunction, possible sites of action can be
visualized. Table 1 lists the variety of biological pro-
cesses that are susceptible to toxie insult. This is com-
pounded by the number of male and female target sys-
tems that may be affected. Normal reproductive
funetion is dependent on the neuroendocrine system for
the maintenance and function of the gonads and acces-
sory sex organs. The gonads and accessory sex organs,
in turn, carry out major roles as producers of germ cells,
steroid hormones and an environment conducive to pro-
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Table 1. Various reproductive functions susceptible to toxic
chemicals.

Process
Hormenal

Endocrine cell
Hormone synthesis
Hormone intracellular transport and release
Feedback mechanisms
Hormone transport and metabolism
Transport
Metabolism
Hormone-mediated response
Membrane transport
Cytoplasmic receptors
Nuclear translocation
Chromatin interactions (DNA included)
mRNA
Protein synthesis
Struectural integrity of protein
Functional integrity of protein
Maintenance
Excretion
Metabolism
Replication
Differentiation
Growth
Ion transport
Protein
Mierovasculature

Cellular

Secretory

Smooth musele
function
Neurobehavioral Tubular funetion

creation. It is beyond the scope of this discussion to
detail each of these systems which have been reviewed
well elsewhere (52-54). Rather, the discussion will focus
on several concepts which have been addressed through
mechanistic studies.

Receptor Mechanisms

Many reproductive toxicants are likely to act in a
fashion similar to endogenous reproductive hormones
which initiate their action through a membrane or in-
tracellular receptor. In such cases, pharmacokinetic pa-
rameters would determine the amount of agent which
reaches a receptor to produce the toxicodynamic effect
resulting in toxicity or some undesired physiolegic re-
sponse. Likewise, mechanistic studies at this level
would provide: identification of the cellular target for
the toxic agent at the molecular level; characterization
of the ultimate form of the toxic agent studied; and
elueidation of the agent-receptor interaction at the mo-
lecular level, including the short- and long-term con-
seqeunces of that interaction.

The best example of toxicants which appear to have
this common mechanism are the estrogenic xenobiotics,
such as DDT and kepone (55,56). These have been
shown to bind to estrogen receptors and stimulate es-
trogenic responses in several systems. The estrogenic
activity is considered to be disruptive to reproduetive
capacity because it interferes with normal hormonal and
developmental events. The mechanism of estrogen ac-
tion is generally considered to involve the binding of
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estrogen to cytoplasmic macromolecules called recep-
tors. Estrogen receptor complexes undergo iransloca-
tion to the nucleus where they bind to acceptor sites on
chromatin. This nuclear binding is thought to stimulate
transeriptional events which result in elevated RNA
and protein synthesis. 1f estrogenic toxicants act in a
similar fashion, then sereening tests which could detect
and classify these agents could be developed. For ex-
ample, simple competitive inhibition assays for estrogen
receptor binding can establish readity whether or not
an agent binds to receptors. If binding occurs, then the
agent may act as an estrogen agonist or antagonist,
disrupting normal endocrine control.

Estrogen receptors have been described in a variety
of tissues, including the hypothalamus, pituitary, and
ovary, and a common mechanism of cellular action has
been proposed for each (57). Therefore, an estrogenic
insult during the perinatal or adult period may act at a
number of biological targets. For example, an estro-
genic compound could interact at the hypothalamic level
to disrupt the mechanisms which eontrol normal eyclic
secretion of genadotropins in adult life (58).

The knowledge that a compound interacts with a spe-
cific receptor makes it very likely that a receptor-me-
diated event ig linked to the toxie action. This knowl-
edge should ultimately provide new insights into
reproductive toxicity testing and risk assessment. For
example, many cellular and molecular processes tend to
be similar in different species; thus, clear definition of
the receptor for a toxic agent and its interaction with
chemicals should aid interspecies comparisons of tox-
icity. Likewise, since many receptors influence the
structural and regulatory integrity of genes, altered
protein synthesis or abnormal regulation of protein syn-
thesis may be early indicators of potential reproductive
dysfunction that is initiated through s chemical-receptor
interaction.

Hypothalamic-Pituitary Mechanisms

A toxic chemical may advergely affect reproduction
by altering the rate of secretion of one or more hormones
that are synthesized and released by the hypothalamus
or anterior pituitary gland (58). Of the hormones that
are secreted by the anterior pituitary gland, the go-
nadotroping (luteinizing hormene, follicle-stimulating
hormone, and prolactin) are most closely associated with
reproduction. The gonadotropins contrel ovarian and
testicular function, including steroid hormone secretion,
follicular development and ovulation, and spermatoge-
nesis. Hence, if gonadotropin secretion is suppressed,
either by direct action on the pituitary or by suppression
of hypothalamic-releasing factors, gonadal function ig
suppressed.

Alternatively, a toxicant could stimulate the seeretion
of pralactin, and the resulting hyperprolactinemia might
suppress gonadotropin secretion. Prolactin secretion
can be stimulated by substances that have estrogenie
activity, substances that act as dopamine antagonists,

substances that inhibit dopamine secretion by hypotha-
lamic dopaminergic neurons, and substances that cause
hyperplasia of prolactin-secreting cells. Some of these
actions of toxicants can be assessed by quantifying go-
nadotropin and prolactin secretion, whereas others such
as releasing factors cannot be evaluated in a quantita-
tive sense.

It is eonceivable that toxicants with neurotransmitter
and gonadotropin-like activity will be identified which
mimic or antagonize the normal seeretion of gonadotro-
pins. Such observations form a basis for further work
on mechanisms in this field and may in the future lead
to insights coneerning risk assessment,

Inhibition of Steroidogenesis

Estrogens (primarily 17p-estradiol), progesterone,
17a-OH progesterone, androstenedione, and testoster-
one are the predominant steroids produced by the hu-
man gonads during the reproductive years (52). They
regulate gonadotrophin secretion and the reproductive
cycle, as well as influence the development of the ac-
cessory reproductive organs and secondary sex char-
acteristies. Regulatory steps in gonadal steroid secre-
tion include substrate (cholesterecl) availability,
luteinizing-hormone induction of the 20, 22-hydroxyl-
ase-desmolase steps converting cholesterol to pregnen-
olone, and follicle-stimulating-hormone induction of
granulosa cell aromatase aetivity converting thecal an-
drogens to estrogens. If, at any point, the series of
events leading to the synthesis and secretion of active
steroids is disrupted, then control of the reproductive
system is compromised. A toxicant may not demon-
strate inhibition of steroidogenesis in vitro and yet be
active in vivo, if it selectively affects gonadotropin-me-
diated events in vivo or progesterone synthesis stim-
ulated by human chorionic gonadotropin. Hence these
effects would be detectable only in vivo during a con-
ceptive cycle. Similarly, agents affecting prostaglandins
which induce luteal regression in some species may be
active only in vivo. The agents may not act directly on
the steroid-secreting cell, but indireetly by selective
ovarian venoconstrictive action. Similar processes occur
in the testis which lead to testosterone biosynthesis by
the Leydig cells and may adversely affect germ cell
maintenance by Sertoli cells, germ cell development,
and accessory sex organ function. Despite these pos-
sibilities, most known inhibitors of steroidogenesis act
by affecting specific enzymes in the steroid pathways
(Table 2).

Reproductive Toxicants

Poalyeyelic Aromatic Hydrocarbons. The poly-
cyclic aromatic hydrocarbons (PAH) are ubiquitous en-
vironmental pollutants praduced by combustion of fossil
fuels. They are contained in automobile exhaust, smoke
stack emissions, and cigarette smoke. Although these
compounds have long been known to be toxic and car-
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Table 2. Agents that inhibit steroidogenesis.

Steroidogenic step

20c-Hydroxylase
Side chain cleavage

Inhibitor

Amino glutethimide phosphate
3-methoxybenzidine

Dehydrogenase, Cyancketone
3B-hydroxy-AS-steroid
Estrogens
Azastene
Danazol

Aromatase 4-acetoxy-androstene-3,17-dione
4-hydroxy-androstene-3,17-dione

1,4,6-androstatrine-3,17-dione

118-Hydroxylase Danazol
Metyrapone
SKF-12185
21-Hydroxylase Danazol
17a-Hydroxylase Danazol
3U-9055
SU-8000
17,20-Lyase Danazol

cinogenie, recent studies have also demonstrated re-
productive toxicity.

Several PAHs have been demonstrated to destroy
oocytes in weanling and sexually mature rats and mice
(59). Treatment of a pregnant female will also destroy
oocytes in the female fetus in utero. The mechanism of
action is thought to depend on metabolism of the parent
PAH to a chemically reactive intermediate which binds
covalently to cellular macromolecules destroying the
oocytes. The effect of oocyte destruction is to produce
premature ovarian failure in the treated animals. Re-
cent experiments have also suggested that certain
PAHs can alter the ability of oocytes to complete
meiosis, suggesting another mechanism for reproduc-
tive failure after ovulation.

Susceptibility of human or nonhuman primates to oo
eyte destruction by PAH is not clear. However, it has
been demonstrated that smoking produces a dose-de-
pendent decrease in the age of spontaneous menopause
(60). Women smoking one or more packs of cigarettes
per day have menopause approximately two years be-
fore nonsmokers. Women smoking half a pack of ciga-
rettes per day have a median age of menopause about
one year before nonsmokers. It has been suggested that
the effect of smoking on the age of menopause is due
to oocyte destruction by PAH from cigarette smoke.
Many studies have suggested that cigarette smoke and
nicotine can impair reproduction and fetal development
in experimental animals as well as humans. It is not
known if these adverse effects result from PAHs, ni-
cotine, carbon monoxide, or protein pyrolyzates, all
known constituents of cigarette smoke.

Alkylating Agents. Alkylating agents are useful in
both the chemieal industry and as therapeutics because
of their chemical reactivity. In the chemical industry,
they are used in a broad spectrim of synthetic reactions,
and as therapeutics they are useful in treating neoplastic
and some nonneoplastic diseases. The alkylating agents
are also interesting because they represent known re-
productive toxicants.

One of the first alkylating agents used therapeuti-
cally, busulfan, is known to produce gonadal failure in
humans and experimental animals (61). Also, high-dose
intermittent therapy for neoplastic disease with cyclo-
phosphamide alone or in combination with other drugs
destroys oocytes in an age- and dose-dependent manner.
Other antitumor drugs also impair fertility and cause
reproductive dysfunction in both the male and female
(61).

Male antispermatogenic effects have been associated
with various alkylating agents, for example, 1,2-di-
bromo-3-chloropropane (62—64) and its metabolites ep-
ichlorohydrin and o-chlorohydrin (64), cyclophospha-
mide (65,66), and ethyl methanesulfonate (EMS) (67).
These compounds act directly on the genetic material
by alkylating the DNA (68). In the case of EMS, a
specific nucleotide (guanine) is alkylated, and the ge-
netic message is permanently misread. This leads to
ineorrect DN A and RN A replication and the subsequent
synthesis of inappropriate protein sequences. These de-
ficiencies result in eytotoxicity to the spermatogenic
cells. Other electrophilic chemicals may also act directly
on the DNA of spermatogenic cells and lead to eyto-
toxicity or improper genetic messages by mutagenesis
or clastogenesis. The ability to predict interspecies re-
sponses to alkylating agents is dependent upon the gen-
eral distribution and metabolism of these compounds in
the various biological systems.

Of particular interest is the response of the repro-
ductive system to cyclophosphamide (69). The mecha-
nism of reproductive toxicity of cyclophosphamide re-
sults from metabolic activation of the parent compound
and formation of reactive intermediates. Detoxification
of reactive metabolites occurs through conjugation. Re-
pair of resulting cellular damage after cyclophospha-
mide treatment requires replacement of damaged ma-
eromolecules and DNA repair.

An interesting difference in age-dependent sensitiv-
ity for gonadal toxicity from eyclophosphamide exists
between males and females. Young females are more
sensitive to oocyte destruction than older females. In
males, however, the young (prepubescent) animal is
more resistant to testicular toxicity than the older male,
This difference in sensitivity represents differences in
both reproductive and toxicological mechanisms. The
rate of spermatogenesis in the prepubertal testis is very
low, and since spermatogenesis is sensitive to cyclo-
phosphamide, suppression of sperm cell division will
provide some degree of protection against toxicity, con-
sistent with the observed age-dependent differences in
testieular toxicity. In the female, however, the most
sensitive population appears to be the resting or small
oocytes. As these are present throughout most of the
life of the female in the same metabolic state, this cannot
account for age-dependent differences in sensitivity.
There is evidence, however, that the availability of
pathways for detoxification of the reactive metabolite(s)
of eyclophosphamide change with age, and that these
changes parallel the observed changes in sensitivity.
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Therefore, the opposite age-dependent changes in ovar-
ian and testicular sensitivity to cyclophosphamide can
be explained on the basis of an understanding of both
reproductive biology and toxicology. In the testis, re-
population of seminiferous tubules will oceur if sper-
matogonia remain after cessation of c¢yclophosphamide
toxicity, In the ovary, however, since ocogonia are not
present after birth, oocyte destruction is permanent and
irreplaceable. Cyclophosphamide has also been dem-
onstrated to impair meoisis in rat oocytes.

Solvents, Recent studies have demonstrated that
certain intermediate solvents, effective in ereating mix-
tures of chemicals which are generally soluble only in
either organic or aqueous solutions, may be reproduc-
tive toxicants. These compounds, such as the various
glycol ethers, are very important industrial chemicals.
Selected members of this clags of compounds have ad-
verse effects on testicular function in laboratory ani-
mals, while other members of the class are less active
(70). The testicular toxicity of ethylene glycol mono-
methyl ether is the result of metabolism of the parent
compound to the active toxicant, methoxyacetic acid
(71). Other compounds in the class, such as ethylene
glycol monobutyl ether and the propylene glycol alkyl
ether series seem to be considerahly less toxic to the
reproductive system.

The structure—activity studies of such compounds are
essential for safety assessment and for the elucidation
of the mechanism of action. Unlike the alkylating
agents, the glycol ethers seem to have little or no mu-
tagenic activity. The mechanism of action seems to be
an effect specifically on the late stage spermatoeytes in
the testis, leading t0 severe changes in testicular mor-
phology, decreased sperm production, adverse effects
on fertility, and very modest evidence of dominant le-
thality of these compounds (72). Compounds like the
glycol ethers are apparently metabolized to an active
metabolite, but the present evidence does not support
a genetic or a hormonal mechanism of action. It is im-
portant to follow up the original toxicity and metabelism
studies to identify the cellular target.

Mechanism Studies and Risk Assessment

Although information on mechanisms would certainly
be of value for interpretation of experimental data and
risk assessment, from a practical point of view, a de-
cision on human reproductive risk would most likely
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have to be made long before such information iz avail-
able. It often takes years of research effort to come up
with a possible mechanism of action—not only toxico-
logical but even pharmacological—and there are many
compounds in widespread use whose mechanism(s) of
action have not been determined. Drugs, pesticides,
herbicides, ete., usually enter the marketplace with
some information as to their physiological effects from
which one can obtain a starting point for studying their
mechanisms of action and potential toxicity, However,
chemicals are often not developed with living organisms
as a target, thus limiting the amount of data available.
Frequently, studies at the molecular or biochemical
level have not been carried out. There is no question
that knowledge of the in vivo effects of chemieals on
reproduction is valuable. However, it is highly unreal-
istic at this time to insist that the mechanisms of toxicity
be ascertained before marketing the chemical.

We do not fully understand all of the molecular events
of the normal reproductive pathways. Thus, it can be
expected that the study of toxic mechanisms, many of
which may affect several pathways, will be difficult. The
development of new assays will be required as well as
an upgrading of the training and expertise in this area.

Given the present state of the sciences of reproductive
biology and toxicology, it is difficult to predict differ-
ential species susceptibility, even assuming knowledge
of mechanism of action. However, in the long run, un-
derstanding mechanisms of action provides the greatest
potential for prediction of reproductive hazards and risk
assessment across species. Although mechanistic data
may be helpful and should be considered as it becomes
available, there are no general recommendations as to
how such data should be used in hazard and risk anal-
yses, Such recommendations may be possible in the fu-
ture when an integration of pharmacokinetic and toxi-
codynamic parameters result in insights from which
predictions can be made,

Workshop on the Role of
Pharmacokinetics in Reproductive
and Developmental Toxicological
Research*

Introduction

Pharmacokineties is the study of the absorption, dis-
tribution, metabolism, and excretion of a chemical agent
and a description of these events in mathematical terms.
The objective of pharmacokinetics is to define the con-
eentration of the chemical and/or its metabolites in the
varions compartments at any given time during uptake,
distribution, metabolism, and excretion. This informa-
tion can be used to relate the concentration in critical
tissues (i.e., adult reproductive organs, gametes, con-
ceptus, and neonate) to the toxic event (pharmacody-
namies) and to help in defining cause and effect (Figure
2). The ultimate goal, however, would be to use this
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DISPOSITION OF DEVELOPMENTAL TOXICANTS
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FIGURE 2. Representation of the relation between pharmacokinet-
ics and pharmacodynamies. FT = free toxicant; BT = bound
toxicant and TM = toxicant metabolite.

information to predict human reproductive and devel-
opmental toxicity. The limiting factor in the use of phar-
macokinetic data to predict human reproductive and
developmental toxicity is not the state of the art of
pharmacokinetics, but rather the ethical and technical
considerations which limit the application of the tools
of pharmacckinetics to the human situation. Neverthe-
less, pharmacokinetic data derived from test animal sys-
tems can be used, in most instances, to infer from
plasma data the limits between which the concentra-
tions of the unbound chemical and its metabolites are
likely to occur in animals exhibiting the toxic event,

The discussion of specific isstes in the use of phar-
macokinetics is limited here to its application to the
pregnant female and developing conceptus. Several
basic concepts that apply to the maternal—placental—-
conceptus unit, maternal-neonatal unit and to model
animal systems are summarized in the following state-
ments. Figure 3 may aid in its representation of the
various compartments involved and their relationships.
The first five concepts (a through ¢) are concerned with
parameters that affect concentration of the unbound
drug in the maternal-fetal-placental unit. The last three
coneepts (f through A) comment on dose-response re-
lationships. The importance of a dose-related toxicolog-
ical response should be recognized. If a toxic response
is not related to the quantity of parent compound or one
of its metabolites, the validity of the study is open to
question.

(a) If a chemical is transferred to the conceptus by
simple diffusion and is not metabolized significantly by
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FIGURE 3. Representation of the compartments of the maternal-
placental-conceptus unit and the pharmacokinetic parameters
that influence the disposition of developmental toxicants.

the conceptus or the placenta or excreted by the fetal
kidney, then the pharmacokinetic parameters and the
concentration of unbound chemieal in maternal blood are
useful in predicting the upper limits of unbound chemical
in the conceptus (73).

(b} If the chemical is slowly diffusible, the maximum
concentration of the chemieal in maternal blood may
occur much earlier than the maximum concentration in
the conceptus. Maternal blood levels, however, can be
used to predict the area under the curve (AUC) and
thus the average concentration of the unbound chemical
in fetal tissue if the chemical is not metabolized by the
conceptus or the placenta or excreted by the fetal kidney
(78). The maternal blood level would provide an upper
limit to the concentration in fetal tissue.

(c) If the chemical is rapidly metabolized by the con-
ceptus or the placenta relative to the rate of diffusion
across the placenta, then it is not possible to predict
concentrations of the chemical in the conceptus solely
from measurements of maternal blood levels (73-76).

(d) If there is active transport of the chemical into,
or out of the conceptus, maternal pharmacokinetics
alone cannot be used to predict the concentration of
unbound chemical in the conceptus (73).

(e} It must be remembered that not all toxic effects
on the conceptus are caused solely by a chemical and/
or its metabolites within the eonceptus. Some effects
can be mediated at sites external to the conceptus (for
example, in the placenta or in the maternal organism).
In such cases, measurement of the chemiecal or its me-
tabolites in the conceptus would not provide relevant
information for predicting risk to the conceptus (77,78).

(f) Pharmacokinetic data spanning the range of doses
used in animal (and human) studies facilitate interpre-
tation and use of dose—response curves generated by
the toxicologieal data.

{g) Knowledge of pharmacokinetic parameters in two
test species facilitates the selection of dosage regimens
for the investigation of species susceptibility at equiv-
alent exposure (36,79,80).

{(h) The pharmacokinetics of single dose and repeated
dose exposure may be quite different.

Single-dose kineties are more dependent on the strue-
ture of the placenta because diffusional rate constants
are more important in limiting concentration of the
chemical within the conceptus after single doses than
after repeated doses. Nevertheless, as long as the par-
ent compound is not actively transported and the trans-
fer is pH-independent, the assumption that after the
administration of a single dose the maximum concen-
tration of unbound parent compound in fetal blood is no
higher than the maximum concentration of unbound par-
ent compound in maternal blood is valid.

When repeated doses are administered to steady
state, it is likely that the average concentration of the
unbound parent compound in the blood of the conceptus
is virtually independent of the rate of diffusion across
the placenta if the compound is not metabolized by the
conceptus and not exereted by fetal kidney. The average
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concentration of unbound parent compound in the blood
of the conceptus will be less than its concentration in
maternal blood if its metabolism oecurs within the pla-
centa or coneeptus or it is excreted by fetal kidney. The
magnitude of the decrease depends on the rate of me-
tabolism and excretion relative to the diffusional rate
across the placenta.

Use of Pharmacokinetic Studies in Choos-
ing Test Animal Species

Pharmacokinetic data are not useful for selection of
animal species for initial studies of either reproductive
or developmental toxicity if the compound under inves-
tigation has not been previously tested for reproductive
or developmental toxicity. If the compound is known to
exhibit reproductive or developmental toxicity in any
species, then pharmacokinetic studies are helpful in elu-
cidating the mechanism of toxicity and establishing rel-
evant parameters to be used in making inter- or in-
traspecies comparisons. For example, from differences
in pharmacokinetic parameters between animal species,
it is frequently possible to determine whether the tox-
icity is due to the parent compound or to a metabolite
(81-83).

If it can be established that the toxicity is determined
solely by the parent compound, then qualitatively dif-
fering patterns of metabolism in different test species
may be irrelevant; only the rates of elimination and/or
clearance of the compound should be relevant. Phar-
macokinetics can determine the dosage levels to be em-
ployed to maintain equivalent concentrations of the par-
ent compound in the two species. With such an approach
the relative sensitivity of the species to the toxicant can
be assessed (36,79,80). If the reproductive toxicity is
due to a metabolite, pharmacokinetic data can be used
to determine which species are likely to be susceptible
based on the ability to form the toxic metabolite (84).

If pharmacokinetic and toxieity data exist for one an-
imal species and comparable pharmacokinetic data exist
for a second species, then a qualitatively similar toxie
response would be predicted for the second species, if
the mechanism of action and target tissue susceptibility
are the same in the two species.

Use of Pharmacokinetic Studies to Estab-
lish an Appropriate Dosing Regimen

If the effective dose is defined as the dose at which
a toxic effect is manifested in the human conceptus, then
pharmacokinetics can help establish a dosing regimen
that would result in approximately the same concen-
tration of the chemical in the test system as oceurs in
the human conceptus after a toxic dose. Owing to the
probability that there are quantitative differences in
incidence rates and severity of response between spe-
cies, suitable animal models will usvally be selected on
the basis of dose—response curves for reproductive and

developmental toxicity rather than pharmacokinetic pa-
rameters. Pharmacokinetic studies will then be useful
only to determine the relative sensitivities between spe-
cies after a suitable animal model has been found using
toxieity as an endpoint. Pharmacokineties will also pro-
vide a basis for the comparison of various regimens and
procedures, i.e., route of administration, vehicle and
scheduling of doses.

Pharmacokinetics and Critical (Sensitive)
Periods of Development

Each of the periods of development (preimplantation,
organogenesis, and histogenesis) is critical for different
aspects of maturation and is affected to different extents
by substances which adversely affect development. An-
imal models are being used to identify the susceptible
organ system(s) and gestational time(s) of vulnerability.
The possibility exists, however, that any agent deliv-
ered to the suseceptible site at the critical time in de-
velopment will yield the same or a similar toxic response
irrespective of the animal species or agent, if the mech-
anism is similar. This statement is predicated on the
understanding that the most important determinants
for teratogenic susceptibility appear to be the genotype
of the organism which determines the kind and level of
biochemical response available (80), and the gestational
stage of the embryo or fetus at the time of insult. There
is some specificity of agent relative to the toxic response
but there are almost always lesions in organ systems in
addition to the “characteristic anomaly” (85). Once the
time of vulnerability has been defined, pharmacokinet-
ics can be used to determine the concentration of the
toxicant in the animal model at that time. In the human,
pharmacokinetics can assist in guantitating the expo-
sure of the coneeptus in specific instances of toxicity.
Pharmacokinetics can define the similarities and differ-
ences in exposure of the conceptus to a toxicant during
critical periods of development in both test animals and
humans.

Although studies are being carried out on the phar-
macokinetics of drugs in human concepti and newborns
(86—91) and in animal models (76,84,92,93), very little
information is available about the pharmacokinetics of
chemieals in the human fetus during early pregnancy.
Furthermeore, this information is very difficult to obtain,
Pharmacokinetic data can be obtained from the non-
pregnant woman, but these data may not be completely
applicable. Nevertheless, it should be possible to obtain
useful pharmacokinetic data during the first trimester
by studying pregnant women on chronic drug therapy
{e.g., anticonvulsant, antihypertensive, and antiarthrit
ic drugs). With these data and data from a test animal
system, it may be possible to estimate pharmacokinetic
parameters for at least these chemicals in the human
conceptus during early pregnancy.

If the relationship between maternal and fetal phar-
macokinetics is known in cne animal system, then
knowledge of maternal pharmacokinetics and fetal met-
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abolic capacity in another test system should permit
reasonable estimates of the pharmacokineties in the fe-
tus, and the relative risk of a toxicological event.

Choice of Endpoints (Targets) for Evalua-
tion of Exposure

Ideally one would like to know the correlation be-
tween the exposure at the molecular target and the time
of initiation of the lesion. It is not possible at this time
to establish the concentration of the toxieant at the mo-
lecular target by direct measurements. Thus, indirect
approaches are necessary, such as measurements of con-
centrations in specific organs/tissues, embryo/fetal
blood, whole embryo/fetus, or maternal blood levels;
e.g., by autoradiography or analytical chemical tech-
niques (HPLC, GC-MS) (94). In many cases, it may not
be necessary to measure levels in the conceptus because
maternal pharmacokinetics can often provide bounda-
ries of the expected concentrations within the concep-
tus.

Even if the initial biochemical and/or morphological
event at the time of insult leading to the ultimate man-
ifestation at term has not been established, pharma-
cokineties is useful in evaluating dose -response curves;
that is, the relationship of the incidence or severity of
the toxic response to the dose administered to the ma-
ternal organism and the maternal and/or fetal concen-
tration of the toxicant.

If the mechanism of the toxic event has been estab-
lished in an animal model, pharmacokinetics would allow
the selection of a dosing regimen and sampling intervals
that would provide equivalent exposure in additional
species. With this information, it should be possible to
establish species differences in threshold concentrations
and sensitivities. A finding of negligible species differ-
ences increases confidence in making extrapolations
from animal to man.

Prediction of Thresholds

There are three kinds of thresholds: metabolic, sta-
tistical, and “real.” The metabolic threshold can be de-
fined as the eoncentration (dose) range at which there
is a change in the pharmacokinetic parameters (95,96).
The statistical threshold may be defined as the dose
level below which no adverse effects have been detected
within the confines of the experimental design. This is
a pragmatic definition which may be dependent on sam-
ple size. The “real” threshold can be defined as a dose
below which an adverse event would never occur. The
“real” threshold cannot be determined in teratological
or toxicological experiments at this time. When the mo-
lecular meehanism of the toxic event is understood, it
may be possible to determine whether a “real” threshold
exists and pharmacokinetics may be useful in estimating
the threshold.

Pharmacokinetics can identify the existence of a met-
abolic threshold. In those cases where the metabolic

threshold is related to a toxicologic event (i.e., above a
given concentration of toxicant the metabolic profile
changes and toxic effects oceur in a test system), phar-
macokinetics can help to predict the statistical thresh-
old.

Future Experimentation

Several approaches are needed to better utilize phar-
macokinetics in the interpretation of reproductive and
developmental toxicity. These are suggested as an im-
petus for further research in this area,

+ Studies to quantify changes in the pharmacokinetics
of toxicants throughout gestation. These studies should
be designed to describe changes during development in
the mother, placenta or conceptus which affect the phar-
macokinetics of a chemical (i.e., placental type, active
transport, metabolism, blood flow, amniotic fluid dis-
position, ete.).

» Transplacental pharmacokinetic studies in animal
models (e.g., pregnant ewe and monkey) which provide
simultaneous, time-course information from fetal and
maternal blood.

« Utilization of in vitro test systems (derived from
the conceptus and placenta) to aid with interpretation
of pharmacokinetic data and to relate toxicological
events to the concentration of toxicant at the molecular
target.

» Utilization of early indicators of chemical effects (pH
changes, enzyme activities, heart rate, blood pressure,
ete.) to correlate with pharmacokinetic parameters.
Even though these early indicators may not necessarily
be related to the toxie event, they will provide infor-
mation concerning the chemical’s pharmacodynamic
profile..

+ Studies in animal models utilizing toxicants for which
information is available in pregnant women. These stud-
ies can be used to test the validity of pharmacokinetic
data gathered from animal models.

+ Correlation of pharmacokinetic parameters with ter-
atological endpoints in a single animal. This initial step
in prediction must be accomplished in order to identify
the pertinent pharmacokinetic and teratological param-
eters within an animal so that more meaningful inter-
species correlation may be attempted.

Summary

Pharmacokinetics, the application of kinetics to the
disposition of chemicals in the body, is a quantification
of the absorption, distribution, metabolism, and excre-
tion of chemicals in the intact animal as a function of
time. The goal of reproductive toxicological research is
to provide a basis for selecting acceptable levels of hu-
man exposure to potential toxicants. In the absence of
toxicological information, pharmacokinetic data are of
limited help in assessing the safety of most chemicals.
However, when used in conjunction with data on the
toxicology and mechanism of action of chemicals includ-
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ing drugs, pharmacokinetic data can be a signficant as-
set in predicting potential risk to humans.

Pharmacokinetics can help in the design of definitive
studies after preliminary data are collected. Better
characterization of the dose—response curve, more ac-
curate comparison of species sensitivity, accurate def-
inition of the actual dose at the site of action, definition
of the rate of transfer of chemicals into and out of the
conceptus, and extrapolation between species and from
one route of exposure to another ean be done more
reliably when pharmacokinetic data are available. In
addition, thoze chemicals with saturable elimination ki-
netics can be identified through pharmacokinetic stud-
ies; many such agents with a metabolic threshold have
a toxicological profile that correlates with the phar-
macokinetic profile. Thus, pharmacckinetic data are im-
portant in the prediction of potential developmental and
reproductive hazards for humans.

Workgroup on Risk Assessment in
Reproductive and Developmental
Toxicology*

Introduction

Substantial evidence indicates that agents which have
been associated with human reproductive effects can
also be associated with reproductive effects in other
mammals (8,9,97-102). This suggests that reproductive
effects induced in animals may be predictive of repro-
ductive effects in humans. The most substantial evi-
dence for assessing human risk can be derived from
human studies with adequate design and sufficient sta-
tistical power to detect an effect. However, adequate
prevention of adverse effects on human reproduction
will only be achieved through prudent use of experi-
mental models.

This report is not intended for the purpose of setting
strict criteria for evaluating seientific information which
will be taken as evidence (proof) of human repreductive
hazard in the absence of human epidemiologic data but
rather to review those factors which need to be consid-
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ered in reproductive risk assessment for environmental
agents, The greater the weight of evidence over a num-
ber of factors, the greater the likelihood of a human
effect. These factors include but are not limited to: in-
ternal consistency of results, reproducibility of results
in the same species as well ag in the number of species
adequately studied with positive results, demonstrated
dose—response relationships and routes of exposure,
similarities in molecular structure to other known re-
productive health hazards, similarities in metabolism
and kineties in the test species to that of humans (when
this is known), presence of reproductive effects in the
absence of other overt parental toxicity. When human
data are available, concordance between experimental
studies and human data should also be considered when
assessing the evidence, taking into consideration rela-
tive exposure levels, power of studies to detect a pos-
itive result, and type of endpoints measured.

Internal Consistency

Internal consistency refers to the need to distinguish
biologically significant events from random statistical
fluctuations and experimental error. This differs from
external consistency, which refers to the need to com-
pare the results among different experimental groups,
strains, species, and other factors. In general, the more
consgistent the results internally, the more qualitative
weight may be placed on evidence from the study. Ran-
dom, statistically significant results are possible in stud-
ies due to multiple statistical tests, each employing a
small level of significance (e.g., 0.05). For example, a
single biclogical parameter such as a survival index has
a probability between (.15 and 0.46 of occurring at ran-
dom as a statistically significant event in a three-gen-
eration reproduction study (102). “When large numbers
of biological parameters are compared in a multi-gen-
eration study, the probability of finding at least one
statistical false positive is almost a certainty” (103).

The cautious sorting of true effects from statistical
artifacts requires expert judgment in lein with state of
the art thinking in the field. Such judgment entails eon-
siderations of biological plausibility, statistical meth-
odology used, a knowledge of historieal controls, and
evaluation of the conduct of the study.

Reproducibility of Results in the Same
Strain/Species and in Other Strains and
Species

Replication of results for a given strain lends consid-
erable weight to a causal hypothesis of effect. When a
reproductive effect is found in multiple studies for sev-
eral species, the evidence is even stronger. A problem
in interpretation oceurs, however, when results of stud-
ies are disparate.

Qualitative evaluation of the degree to which two or
more studies are similar with respect to design and
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analysis should be applied to every aspect of the pro-
tocols. As an example of the differences in results which
can occur when only the timing of effect measurement
is varied, Snow and Tam (104) found different effects
on fetal growth among mice exposed to mitomycin-C on
the same day of gestation, depending on whether sac-
rifice occurred at 7.5 days, 8.5 days, 10.5 days, 13.5
days, or at birth.

Interspecies and interstrain variations in suscepti-
bility to potential teratogens are well-documented in the
literature. Because the causes of interspecies variation
may be due to one or more factors, a positive test in
one species cannot be regarded as conelusive in deter-
mining a given degree of human risk. Such factors in-
clude physiological and biochemical differences in ma-
ternal pharmacokinetics, differences in placental
transfer rates, differences in susceptibility to chemical
interactions at molecular, tissue, and organ levels, dif-
ferences in background incidence of reproductive ef-
fects, and differences in the gestaticnal sequence of de-
velopment. There is no evidence that any particular
species or strain more consistently predicts human sus-
ceptibility to animal teratogens than any other species
or strain (8,97). Hence, it is not possible to specify the
number or nature of species or strains that are eptimal
for human risk assessment. To increase comparability
of studies, inherent differences among strains and spe-
cies should be accounted for to the extent possible by
assuring adequate sample sizes for each study (105).
The possibility that a human effect could be indicated
from animal tests should be further evaluated through
considerations of relative exposure levels between the
test animal and man, and through considerations of com-
parative metabolism and pharmaecckinetics.

Dose-Response Relationships

Several potential types of dose—response relation-
ships exist for reproductive effects, depending on the
risk under investigation. For example, with teratoge-
nesis, timing of dose as well as level of dose affect re-
sponse levels (47). As a consequence of the prenatal
development of the ova, chronic low-dose exposure is
of special potential concern for females. Little is known
about dose—response relationships for agents which af-
fect the postnatal development of sexual maturity, for
example, for agents that could delay the onset of pu-
berty, In view of the fundamental differences in mech-
anisms for different reproductive effects, differences in
timing of exposure, the paucity of both theoretical quan-
titative models and experimental evidence, most dose—
response data should be interpreted on a case-by-case
basis. Interpretation of a particular apparent dose-re-
sponse curve must include the nature of the effects when
considering extrapolation from one species to another;
this is especially important when effects are known or
suspected to vary across species.

Structure-Activity Relationships

The observation of reproductive effects associated
with some chemical agents raises concern that struc-
tural analogs of these compounds may also be active.
Notable examples that have been reported are the an-
tifertility effects of various alkylating agents such as
dialkylsulfates and epoxides. In contrast with muta-
gens, the structure—activity relationships for terato-
gens remains largely unexplored. Nevertheless, struc-
ture—activity considerations should be weighed when
considering the risk of a particular chemical to human
reproduction or development.

Overt Maternal Toxicity

In mammalian teratogenesis experiments, overt ma-
ternal toxicity may oceur only at higher dose levels than
those which may induce teratogenic effects, or maternal
toxicity may oceur at dose levels below fetotoxic levels.
Three classes of agents can be distinguished based upon
our present knowledge: embryo/fetotoxing which are
active in the absence of maternal toxicity (e.g., tha-
lidomide, diethylstilbestrol, ionizing radiation); embryo/
fetotoxins which elicit overt maternal toxicity (e.g.,
aminopterin, methylmercury, and polychlorinated bi-
phenyl); and embryo/fetotoxins active at concentrations
which induce maternal physiologieal changes or stresses
(e.g., cigarette smoking, steroidal hormone, and alcohol
consumption).

Since many agents do not alter embryo/fetal devel-
opment without exerting some effect on the maternal
support system, it is important to thoroughly evaluate
the teratogenic potential of agents to which exposure
may.occur at or near maternally toxic levels.

Epidemiologic Considerations

Nonexperimental studies of human health effects are
based on observations which attempt to relate expo-
sures to health outcomes, Three major issues are in-
volved, all of which must be considered in study design
and/or analysis. These issues are: the definition and as-
certainment of health outecomes of interest; the defini-
tion, identification, and quantification of expoesures; and
the application of appropriate statistical techniques to
determine if an association between exposure and out-
come occurs more often than would be expected by
chance, and to determine the strength of that associa-
tion. The following discussion relates to these issues, in
the context of reproductive toxicity risk assessment.

There are several considerations in using epidemio-
logic methods for evaluating agents suspected of indue-
ing adverse human reproductive and/or teratogenic out-
comes. These considerations not only apply to the area
of reproductive toxicity risk assessment but generally
to the use of epidemiologic techniques.
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Epidemiology relies on observations from available
population groups. While it is often desirable to obtain
data for reproductive and teratologic risk assessment
from humans, factors in data collection, analysis, and
study design often limit the inferenees that may be
drawn. The “exposed” or “at risk” groups may not be
randomly selected and the investigator may have little
control over the exposures of the study pepulation, ex-
cept in a clinical trial. Bias from potenial confounding
factors and other sources should be minimized through
the use of appropriate matching and/or statistical tech-
niques. Unlike experimental investigations, epidemio-
logic observations are made on individuals exposed dur-
ing their lives to a variety of hazards. It will not be
possible, or plausible, to control for all factors except
the one(s) of interest. It is the investigator’s obligation
to choose the best comparison group(s) possible and note
those factors which could bias the outcome. Inappro-
priate comparison groups will limit the inferences that
may be drawn from the analysis.

Objective methods of data collection should be em-
ployed in all investigations of repreoductive and tera-
togenic effects. Measures of objectivity may he classi-
fied into two categories. The first, validity or accuracy,
refers to the extent an observation reflects the actual
or true situation, Sensitivity and specificity are two con-
cepts which can be used to describe the validity of a
test. The second measure of objectivity is variability or
precision, and refers to the consistency or reproduci-
bility of a given observation. It is highly desirable that
sufficient data be obtained in a study to describe the
objeetivity of the methods used, particularly where new
methods are being developed or new applications of old
methods are being attempted.

Definition and Ascertainment of Outcomes.
Several sources of data are used to determine the pos-
sibility of a reproductive or {eratogenic risk. Data from
case reports of reproductive or teratogenic effects have
often indicated when a potential problem exists. This
method relies on the clinician’s ability to recognize an
unusual oceurrence of an event or the association of a
health outcome with a particular exposure. Information
of this type can generate hypotheses on the nature of
reproductive hazards or teratogenic agents.

Vital statistics have the advantage of being routinely
collected and readily available. These data are useful
for evaluating changes over time. However, certain in-
formation may not be recorded, such as measures of
infertility, or may not be available for the appropriate
geographic area of interest. Certain routinely collected
data may not be adequately recorded (e.g., stillbirths).

Data obtained from personal interviews or question-
naires may be subject to reporting bias, memory lapse,
or the respondent’s unwillingness to provide aceurate
information. Investigators should select well validated
survey instruments and carefully select study and com-
parison groups to minimize potential problems.

Retrospectively conducted studies such as these us-
ing case-control designs are useful in evaluating rare
outcomes. Since the events to be studied have already
occurred, it is easier to insure that an adequate number
of study and comparison subjects are included in the
study. Retrospective designs are relatively inexpensive
to conduet, but these studies do not prove the existence
of a cause and effect relationship.

Prospective studies are not as useful in evaluating
rare outcomes, since large numbers of individuals must
be followed to insure an adequate number of diseased
or exposed individuals in the analysis. Prospective stud-
ies are very costly because of the length of time and
amount of resources needed to collect data on a large
number of individuals. However, they may be used to
demonstrate that a cause and effect relationship exists.

Identification of Exposure. Poor ascertainment of
exposure among study and comparison groups may aiso
limit the inferences from a study. An individual may
not recall the amount or duration of exposure to a drug
or chemical, or may not be able to specify what levels
of a substance were present in the air or work environ-
ment. Confirmation of exposures should be attempted
from sources other than the individual, such as hospital
or company records, or by direct measurement of the
work area.

Exposures in general have not been well estimated.
Surrogate measures of exposure have included length
of residence, length of employment in an exposed oc-
cupation, or national estimates of dietary intake, with
little or no direct measurement of present exposures.
Data on past exposures are rarely available. Timing of
exposure in relation to outcome has not been well de-
fined. Difficulties have frequently been encountered in
the development of methods for estimation of and/or
evaluation of effects of multiple exposure other than by
stratification or matching for a few well-known con-
founders. Finally, the development of an increased uti-
lization of clincial measures is encouraged when they
are available and appropriate in the definition of cases
or exposed groups.

It is recognized that it is difficult to identify suitable
control/comparison/reference groups. Because of this
difficulty, appropriate internal or loeal comparison
groups are frequently not ineluded in analytical studies.
1t should be stressed that every attempt should be made
by investigators to identify and include comparison
groups, and not to rely solely on the calculation of ex-
pected values from national population rates for com-
parison with observations in exposed groups.

Statistical Analysis. The data analysis should be
appropriate for the endpoint under evaluation. A single
positive result in a well-designed epidemiologic study
could indicate a potential hazard. Confirmation of this
result in other population groups, if possible, will
strengthen the association of the suspected factor with
the outcome. Moreover, the association should be bio-
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logically plausible. However, a negative or inconclusive
study result does not demonstrate the absence of a haz-
ard or the safety of an agent, unless the study was of
sufficient statistical power and adequately designed to
have been able to detect a difference had one existed.
Often, a small number of individuals are exposed, ex-
posures are poorly defined, or the number of observed
outcomes is small, thus limiting the statistical ability or
power of an investigation to detect a significant excess
related to exposure,

Pregnancy outeomes are not independent events and
should be adjusted within an analysis. Habitual aborters
or parents with a known genetic defect may be ex-
cluded. Adjustments for parity and maternal age should
be made by investigators in the data analysis or, if pos-
sible, in the study design. It is necessary to relate an
exposure to an outcome in order to determine risk. Of
primary importance are the selection of an appropriate
endpoint or endpoints for study, increased precision in
the definition and measurement of exposures, and the
application of appropriate designs and analytical tech-
nigues in the determination of associations and the
strength of those associations.

Epizootic Observations

Epizootic observations from animal populations ac-
cidently exposed to an agent that is suspected of in-
ducing reproductive or teratogenic damage are not usu-
ally available in human risk assessment. These
observations have the disadvantages of the human stud-
ies in that randomization of individuals to “risk” and
“nonrisk” groups prior to exposure is not possible. None
of the advantages of conventional controlled animal test-
ing are present. Thus, these observations are of interest
from an historical perspective as indicators of a potential
hazard but yield little further information for human
risk assessment.

Epidemiological Evaluation of Specific
Endpoints

Teratogenesis. Teratogens share several charae-
teristics, Teratogens usually produce characteristic pat-
terns of abnormality rather than single specific defects.
Particular abnormalities of development or growth in
individual tissues or organ systems may be caused by
many different factors and are therefore not etiologi-
cally specific. Variability of effects of teratogenic agents
on individuals is common. Few affected individuals dis-
play all possible manifestations of damage by a partic-
ular agent. This variability can be explained by four
basic factors: dosage of agent, timing of exposure, dif-
ferences in host suseeptibility (maternal or fetal), and
interactions with other environmental factors. Common
indicators of the teratogenic potential of an agent in-
clude indications that exposure to the agent is associated
with: prenatal-onset growth deficiency, fetal wastage/
infertility, abnormalities of morphogenesis, abnormal-

ities of nervous system performance, or carcinogenicity
or mutagenicity (though perhaps by different mecha-
nisms).

Past experience has demonstrated that different
types of observational or descriptive investigations con-
tribute in specific ways to our understanding of tera-
togenic hazards to the fetus.

Although ease reports, surveillance getivities, and de-
seriptive studies can help to generate hypotheses of
association between environmental factors and terato-
genic outcomes, quantification of risk requires other
study designs. Probably the most sensitive and expe-
ditious approach to the confirmation and definition of
teratogenic risk in humans is the cage-control approach.
However, problems of choice of appropriate controls
often leave such investigations open to criticism, es-
pecially with regard to the specificity and validity of
conclusions. Furthermore, direct reliable estimates of
attributable risk are diffieult without using the pro-
spective cohort approach. Unfortunately, this latter
method is a lengthy process which is relatively inflexible
and sample-size (power) problems make it difficult to
apply strictly for rare events such as birth defects.

Despite these problems, epidemiology has made a sig-
nificant contribution to human teratogenic risk assess-
ment in many cases by providing confirmatory data on
proposed associations, by quantifying risk, and by help-
ing to exclude other risk factors from concern. Never-
theless, new approaches are needed which emphasize
biological relationships and which make more efficient
use of small sets of human data.

One new approach involves careful clinical pattern
analysis and statistical investigation of mechanisms and
inter-relationships of cutcome variables through a tech-
nique called path analysis (706). Since the biological
mechanisms underlying the development of clinical pat-
terns of abnormality are presumably interrelated in spe-
cific definable ways, these relationships result in bio-
logical pathways and developmental hierarchies.
Statistical analysis of birth defects on individuals and
populations should take this into aceount and should help
to confirm or revise these proposed interactions be-
tween outcome variables. This approach may solve
many of the design and epidemiclogic problems outlined
above and may help to define priorities and needs for
future human and animal research.

Spontaneous Abortion. Spontaneous abortion has
been suggested as one of the most useful endpoints for
the evaluation of reproductive risks (107). An important
aspect of abortion as an endpoint for study relates to
the fact that it may be used to identify several different
mechanisms leading to early reproductive wastage
(108). For example, Stein et al. (109) have presented a
model for the relationship between spontaneous abor-
tion and rates of occurrence of congenital malforma-
tions.

One of the widely cited advantages of using sponta-
neous abortions for risk assessment is the frequency
with which they oceur (107). Because of their frequency,
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the power of abortion surveillance or cohort studies to
detect an effect of an environmental (nongenetic) factor
in reproductive outcome is much greater than for other
adverse pregnancy outcomes, such as congenital mal-
formations (110,111).

Currently there are several data sets on spontaneous
abortions that are being used for epidemiologic studies.
These include the Columbia University Study (112) and
the Kaiser Permanente Birth Defects Study (113).
There are several aspects of spontaneous abortions that
must be considered in evaluating their usefulness for
studies of reproductive toxicity, One of these is the
critical question of case ascertainment. Unlike eongen-
ital malformations, for example, spontaneous abortions
may not be readily identified through existing data
sources such as vital or hospital records. Hospital based
studies can be carried out, such as those at Columbia
University, but it is not usually the case that a repre-
sentative series can be assembled. Case series will usu-
ally be assembled through questionnaire studies of re-
productive outcome, This method optimally involves
some method of validating outcomes.

Abortion surveillance programs offer an important
opportunity to menitor the effects of environmental fac-
tors. It is important, however, that protocols clearly
define what is to constitute a case. In addition, the
groups under surveillance must include nonexposed in-
dividuals. Appropriate population based data, with
which surveillance data can be compared, are limited
and estimates of the frequency of early reproductive
wastage vary widely (114,115).

It was noted that abortions can represent the outcome
of several different mechanisms. These include the ac-
tion of embryolethal agents, chromosomal abnormali-
ties, and structural defects. Optimally, the aborted
produect of conception will be examined for morpho-
logical abnormalities and karyotyped.

Approximately 50% of aborted fetuses are karyotyp-
ically abnormal (716). In addition, Hook (717) has sug-
gested that changes in the relative frequencies of aneu-
ploidy and structural rearrangements may relate to the
action of environmental factors.

It is extremely important that appropriate control
groups be selected in epidemiclogic studies of spoenta-
neous abortion. For example, much of the criticism of
the Alsea Study (778) revolved around the control
groups selected.

Since several common factors, such as alcohol con-
sumption and smoking, have been suggested to increase
early reproductive wastage (112), it is important that
those factors be considered in data analysis. Methods
to control for confounding should be employed (179).

Of importance in relating spontaneous abortions to
environmental factors is the timing of exposure. Several
instances can be found in the epidemiclogic literature
where the timing of a purported causal exposure did
not oceur at a biologically meaningful time (120,121).

Applicable information can be gained from ecarefully
planned prospective studies of noncontracepting

women. Occupationally exposed populations are logical
for surveillance but there are a number of legal and
sociopolitical considerations. It is clear that appropriate
comparison groups must be selected. Detailed infor-
mation is required on exposure levels and the timing of
expostire in relation to gestation age. Although tests
are now available to detect pregnancy very early after
conception (122), it is probably too early to employ these
tests in surveillance studies, since no comparable pop-
ulation based data are available.

Fertility/Sterility. Measures of the fertility of a
population include erude and age-specific birth rates and
general and total fertility rates, all of which examine
the number of live births in a certain segment of the
population. Fertility has frequently been studied and
measured on the basis of other endpoints; for example,
the frequency of spontaneous abortion has been used as
an indicator of infertility. These measures have usually
examined reproductive performance as pregnancy out-
come but have generally been insensitive to a lack of
conceptions.

Studies of fertility per se have been somewhat limited
to individual clinical evaluations in the past, and only
recently has attention been drawn to potential hazards
to fertility in occupational settings. These studies have
largely concentrated on the effects of chemical expo-
sures on testicular function, particularly sperm count
suppression and abnormal sperm morphology (123-
127). These studies have compared the results of semen
analysis and other clinical indicators for an exposed
group and unexposed comparison groups, or high and
low exposure groups. Exposure estimation has varied
from the use of direet elinical measures of individuals
(i.e., lead in blood or urine) to workplace air monitoring
data and/or number of years or months in an exposed
oceupation.

A second approach to assessing the fertility of occu-
pationally exposed workers has employed data from in-
terviews or self administered questionnaires of exposed
workers regarding their and their spouses’ reproductive
history, primarily the number of live births among
wives of male workers (128—130). These studies have
compared observed values for number of births to ex-
posed workers to expected values derived from national
fertility tables or national birth probabilities. More re-
cent studies (1£9,180) have caleulated and compared
standardized fertility ratios (SFR) (observed/expected
numbers of births) for exposed and unexposed periods
of an employee’s reproductive history, Neither of these
studies has included a separate unexposed comparison
group in the study design. The study of Wong et al.
(128) estimated exposures in four plants from historical
air monitoring data to workers in broad exposure cat-
egories so that dose-related differences were difficult to
assess. Levine and coworkers (130) have attempted val-
idation of their methods by examining data from persons
exposed to dibromochloropropane who were ineluded in
the study of Whorton et al. (124).

The use of national fertility rates or probabilities as
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the basis for comparison has been criticized because of
the possibility of underestimating expected numbers of
births, thereby causing the SFR to be closer to unity
in a situation where depressed fertility truly exists
(131). It remains to be seen whether this method can
be refined by the inclusion in the design of a well char-
acterized comparison group which more closely resem-
bles the occupational group of interest.

These studies have suffered from relatively poor and
nonspecific estimates of exposure. The clinically based
studies have frequently had difficulties with participa-
tion that tended to limit the validity of the study. Semen
analysis is a direct and relatively sensitive method for
testing fertility. The SFR method is much less sensitive,
but is based on information which is easily obtained
through questionnaire. Continued development of im-
provements and refinements in both these methods is
desirable.

It has been pointed out (132) that the use of measures
of reproductive success rather than failure can avoid
difficulties resulting from lost information such as early
unrecognized fetal loss, but that the use of age-specific
fertility rates is not a good indicator of reproductive
problems in low fertility populations. Rather, the period
of time required to achieve a particular level of fertility
may be a more sensitive indicator of changes in fertility.
Further development of this approach may be useful in
the development of improved methodologies for studies
of fertility.

Statistical Considerations in Experimental
Studies

Three major aspects of sound seientific experimen-
tation that need to be considered in the conduct of ter-
atological and reproductive studies are: control of ex-
traneous factors, randomization of experimental units
to treatment groups, and adequate sample size to detect
meaningful effects. All of these impinge on the statis-
tical power of the study. The control of extraneous fac-
tors is basic to the design of studies in these areas and
these factors have been discussed in detail in the various
guidelines for studies in reproduction and teratology
(22, 138-138). These reports have pointed out a humber
of critical factors involved in the design, conduct, and
interpretation of the tests. This section will discuss
other aspects of experimental design particularly as re-
lated to power considerations and statistieal analysis of
the data.

Randomization of experimental units, such as random
assignment of animals to treatment and control groups,
is essential to eliminate intentional or unintentional
biasing of the experimental groups. Proper randomi-
zation by using random number tables, for exampie,
minimizes the likelihood that the treatment and control
groups will differ substantially with respect to extra-
neous factors which could influence the experimental
results (139).

Determination of an appropriate sample size for an

experiment depends on several factors: the analytie
metheds to be used, the magnitude of a meaningful ef-
fect, and the level of Type I and Type II errors desired
by the investigator.

Statistical technigues employed in the analysis will
influence the sample size requirements for an experi-
ment. If the endpoint studied is a continuous variable
(e.g., birth weight), powerful analytic methods such as
analysis of variance (ANOVA) can be used. Generally,
if the assumptions required for parametric techniques
such as ANOVA are not violated, these techniques are
more powerful than nonparametrie methods, If the end-
point studied is a categorical variable (e.g., presence or
absence of a congenital malformation), the appropriate
statistical methods are less powerful because less sta-
tistical information is available.

The magnitude of the effect that the experiment is
designed to detect and the spontaneous or background
rate of the endpoint in guestion will also influence the
sample size requirement for an experiment.

Another consideration in sample size determination
is the level of certainty required by the investigator in
evaluating the null hypothesis that the exposure is not
related to the endpoint. T'ype I error is the probability
of rejecting the null hypothesis when in fact the null
hypothesis is correct (false positive). Type II error is
the probability of not rejecting the null hypothesis
when, in fact, the exposure and outcome are associated
(false negative). Obviously both types of error are un-
desirable and need to be minimized. The relative levels
of acceptable Type I and Type II errors should depend
on the relative seriousness of falsely implicating an
agent that is not a reproductive hazard or exonerating
a true reproductive hazard. We should emphasize that
sample size determination, involving the components
we have just outlined, is far preferable to arbitrary
requirements of testing 10, 20, or 50 animals as indi-
cated in various ageney guidelines for assessing repro-
duetive toxicity.

In animal teratology studies, there has been a great
controversy over whether the entire litter or the indi-
vidual fetus should be regarded as the experimental unit
(140-146). Haseman and Hogan (741) listed several rea-
sons why they felt the litter shouid be the experimental
unit: (a) the pregnant female is randomly assigned to
the treatment or control groups; (b) the pregnant female
receives the treatment directly; (¢} fetuses from the
same litter exhibit a “litter effect” and do not respond
independently of one another. Assuming that (¢) is true,
if the fetus is treated as the experimental unit, then the
sample size for the statistical test is artificially inflated
and the presence of a litter effect would reduce the
validity of the test, Endpoints are typically measured
according to one of the following scales: continuous, e.g.,
fetal weight; dichotomous, e.g., one if the fetus has a
certain malformation, zero if not; proportional, e.g., the
proportion of live fetuses in a litter with a certain mal-
formation.

When individual litter and fetal endpoints are meas-
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ured by using a continuous seale, an analysis of variance
(ANOQVA) procedure with litter nested in the model ean
be applied for testing litter effects as well as for com-
paring treatment groups to controls (747). This tech-
nique considers the contribution of both between and
within litter variance in the analysis of treatment ef-
fects. Thus, the individual fetal data are used, and the
analysis is conducted by use of the appropriate error
term depending on whether or not the litter effect is
present.

The dichotomous scale measurement can be used at
the individual fetus level or at the litter level. For in-
stance, instead of using the proportion of implantations
which result in resorption as a measure of fetolethality,
the value one or zero can be assigned to the litter ac-
cording to whether the female animal has at least one
resorption. These dichotomous data for the litter avoid
some of the problems encountered with the proportional
data in teratology and reproduction experiments; how-
ever, their use is not recommended for two basic rea-
sons. First, on using the above example of fetolethality,
there is an obvious loss of information; e.g., a female
animal with seven resorptions out of ten implantations
is assigned the same value as an animal with one re-
sorption out of ten implantations. Second, a more subtle
statistical reason is that these dichotomous data do not
yield true binomial random variables. With a binomial
random variable, it is assumed that the probability of
at least one resorption is the same for every female
animal in a certain treatment group. However, if one
animal has ten implantations and another animal has
only two, the first animal has a higher probability of at
least one resorption than the second animal, even
though they may be the same treatment group. If treat-
ment affects the number of implantations, the dicho-
tomous zerc-one values for the litter are not repre-
sentative of the actual situation, and the statistical
analysis based on the comparison of binomial random
variables is not justified.

The special type of proportional data encountered in
teratology and reproduction studies present some
unique statistical problems. For purposes of illustra-
tion, assume that the index of interest iz the proportion
of live fetuses with a certain malformation. For each
litter, the measurement is composed of a numetrator and
a denominator, both of which are random variables.
(The denominator is also a random variable because the
number of live fetuses within the pregnant animal is
not a fixed constant.) Also, the numerator and denom-
inator may be correlated, i.e., when the occurrence of
anomalies and death are not independent. Fetal weight
presents a special problem as well since it is dependent
on litter size. Haseman and Kupper (148) provide an
extensive review article on the various statistical pro-
cedures available for comparing a treatment group with
a control group for this type of proportional data. There
is no consensus among statisticians as to what is the
best procedure, because no procedure has demonstrated
uniform power superiority. With some of the statistical

models discussed below for propoertional data, it may be
possible to devise a test which would determine the
absence or presence of a litter effect. More research is
needed in this respect, because the absence of a litter
effect means that the fetus could be employed as the
experimental unit (and therefore provide a more pow-
erful statistical procedure). Haseman and Kupper (148)
discussed four approaches which they consider accept-
able for proportional data when a litter effect is present.
The generalized binomial models such as the beta-bi-
nomial (149) and the correlated binomial (150}, are
models with extra parameters to allow for the litter
effect.

It is possible to rank proportional data for a nonpar-
ametric test, as in the Mann-Whitney two-sample test.
Gaylor (151) disensses this in detail for teratology and
reproduction studies. This avoids some of the distri-
butional problems encountered with the generalized bi-
nomial models. However, the Mann-Whitney test does
not take into account the varying denominator values.
For instance, a response of one out of two is ranked the
same as a response of five out of ten, even though the
latter response has less inherent variability. Neverthe-
less, the Mann-Whitney test is an analytical tool which
can be very useful for teratology and reproduction stud-
ies, because if there is not much variation among the
denominator values, it is just as powerful as the gen-
eralized binomial models; moreover, it is computation-
ally easy.

Another approach has been to transform proportional
values, 5o that the transformed data are approximately
normally distributed, and then to apply ANOVA tech-
niques. Two common transformations are the are-sine
and the Freeman-Tukey binomial arc-sine. This trans-
formation approach, like the Mann-Whitney tests,
treats equal proportions in the same manner, regardless
of the denominator values.

Gladen (152) applied jackknife methodology for com-
paring treatment to control groups in teratology and
reproduction studies. This technique weights the re-
sponse according to litter size, and the resultant test
statistic has an approximate T-distribution. However,
in a small computer simulation, Gladen (152) was not
able to show that the jackknife test had any power ad-
vantage over the Mann-Whitney test or the transfor-
mation approach.

As Haseman and Kupper (148) point out, “It is dif-
fieult to recommend unequivoeally a particular approach
as being superior to all others,” No one approach dem-
onstrates a clear power advantage nor provides a better
fit of the data. In the case of multiple dose groups, a
trend test may be more desirable than individual com-
parisons to control. For continuous scale data, a contrast
for linear trend can be tested within the ANOVA. For
proportional data, Jonckheere’s test, which is a function
of Mann-Whitney statistics, is often utilized. Lin and
Haseman (753) have provided a modification of Jonck-
heere’s test in the presence of ties. Some of the other
procedures could be modified to yield trend tests, but
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this has not been addressed yet in the literature.

A general approach to the simultaneous inference
problem (multiple nonindependent endpoints within a
given protocol) in teratology and reproduction experi-
ments is very difficult to construct, because quite a va-
riety of designs are employed. An ideal situation for the
statistician would be to have the investigator identify
a decision rule which defines what constitutes sufficient
evidence of teratogenicity or reproductive toxicity. For
example, in a three-generation reproduction study, the
investigator may label an agent fetotoxie if a significant
trend in fetolethality is observed in at least the third
generation. Such a decision rule renders the simulta-
neous inference problem less formidable. Unfortu-
nately, most investigators are not comfortable in relying
solely on a decision rule before deciding on the toxicity
of a particular agent. For some of the basic designs in
teratology and reproduction studies, the consequences
of specific decision rules need to be explored. With re-
spect to carcinogenicity experiments, some results have
been published by Fears et al. (754) and by Gart et al.
(255) in which Bonferroni’s inequality is used in con-
junction with Fisher's exact test. A similar approach
for a one-generation, multiple-dose, teratogenicity
study could be adapted by utilizing some of the afore-
mentioned statistical tests and a multiple comparison
procedure (such as Bonferroni’s inequality). The pres-
ence of multiple generations and reproductive endpoints
further confounds the problem to the point that the
strict use of multiple comparisons would be detrimental
to the overall statistical power associated with the ex-
periment.

In the evaluation of teratologic or reproductive effects
one miust separate the real biologic effects from statis-
tical artifacts. The significance of the biclogic effects
will depend on the endpoint. For example, a shift in
minor skeletal variants such as delayed sternebral os-
sification would not have the same biologic significance
as a cardiac malformation. The former example is g
transient effect with no functional consequence, while
the latter is a permanent effect and has functional im-
plications which may be incompatible with life. Some
endpoints such as skeletal variants must be evaluated
on the basis of spontaneous background incidence for
the specific strain of test animals.

Quantitative Risk Assessment

Quantitative risk assessment attempts to relate
mathematically risk to exposure and is necessary in or-
der to provide estimates or bounds on potential human
teratogenic or reproductive risks. Two major issues in-
volved with risk assessment include those concerned
with extrapolation from high to low doses and those
concerned with interspecies conversion. The first of
these issues is partially a statistical one which can be
addressed with available mathematical models, whereas
the latter, interspecies conversion, is primarily a prob-
lem of biological interpretation.

High- to low-dose extrapolation is often necessary
because experimental studies typically must use high
doses, which are well above human exposure levels, in
order to detect potential toxie effects using limited num-
bers of experimental animals (or units). Two ways of
developing such estimates are the use of safety factors
and the use of mathematical models for extrapolation.

Several limitations exist in the use of the safety factor
approach. For example, it is not known how large a
safety factor should be since relationships have not been
established between the magnitude of the safety factors
applied and the desired risk levels {156). A common
shortcoming associated with the use of safety factors is
the application of safety factors to “no observed effect
levels,” a process which results in some inconsistencies.
The apparent “no observed effect level” is dependent
upon the sample size in the dose group, the locations of
the dose groups on the dose-response curve and the
background level for the particular endpoint evaluated.
In one case, the true response rate at the “no observed
effect level” may be 0.1%, in another case 20.0%, etc.
It must be emphasized that the “no observed effect
level” is not the same as an actual no-effect level (thresh-
old} for the entire population. For example, in a tera-
tology study with no background response rate, a
treated group of 20 animals showing no adverse re-
sponse would have a upper 95% confidence limit of 14%
on the response rate. Thus, an apparent no observable
effect is not proof of the existence of a threshold but
only demonstrates a response rate below 14% with 95%
confidence in this case. Safety factors applied to data
generated from animal experiments for the high- to low-
dose extrapolation, also may not conclude considera-
tions concerning interspecies conversion.

There are also limitations inherent in high- to low-
dose extrapolations using mathematical models. Statis-
tical variability of the data within the experimental
range results in some uncertainty. Outside the exper-
imental dose range additional uncertainty exists be-
cause of the unknown shape of the dose—response curve.

Several models are available which generally fit the
data within the experimental dose range. However,
when extrapolating beyond the experimental dose
range, full reliance on the model will often lead to larger
differences in estimates of the dose associated with a
specific risk, varying in some cases as much as several
orders of magnitude (157). Thus, the resulting estimate
depends on the model selected. The correct model is
(almost) always unknown. However, it is possible to
establish conservative upper bounds on rigk at low doses
in order to establish the corresponding allowable dose
limits.

Available Extrapolation Methods for Dif-
ferent Types of Data
Depending on the type of data available or endpoints

selected, different methods of extrapolation are appro-
priate. Three types of data are commonly observed in
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teratology/reproductive studies: continuous data, count
data, and quantal (binary) data.

Continuous Data. Continuous data are those which
are measured on a continuous or finely partitioned scale.
Examples of these are birth weights of fetuses, hormone
levels, or certain behavioral measurements. For these
types of data, many statistical procedures exist to es-
timate response and confidence intervals for estimates
in the experimental dose range. Simple or weighted
regression techniques for dose—response analysis are
appropriate. If the continuous experimental response is
within the range of human levels of interest, then there
is no extrapolation problem. This may be the case for
some endpoints such as fetal weight reduction. If, how-
ever, the experimental responses are cutside the range
of interest for human levels, then extrapolation outside
the range becomes a problem. Best estimates of re-
sponse levels outside the observed range are sensitive
to modeling assumptions. However, in most regression
models confidence limits can be assigned for extrapo-
lation outside the experimental range. Typically, if one
is far outside this range, the confidence intervals will
be so broad that they allow for considerable spread in
possible estimates.

Count Data. Count data are measured on an integer
scale such as litter size. Often ratios of count data are
formed, such as the proportion of anomalies per litter
or proportion of resorbed fetuses and/or dead fetuses
per litter. Ratios of count data or transformations of
these data can be analyzed by methods similar to those
used for continucus data both within and outside the
experimental data range (148). Caution, however,
should be exercised when using ratios in the presence
of reduced litter sizes if there is a dependent relation-
ship between anomalies and fetal death (758). In addi-
tion, linear extrapolation to zero below the experimental
data range, after accounting for spontaneous back-
ground rates, provide upper bounds on these ratios at
low doses assuming upward curvature of the low-dose
response (159). If the data do not demonstrate upward
curvature, other extrapolation procedures may be re-
quired.

For count data such as litter size, techniques of mod-
eling discrete distributions whose parameters depend
on dose may be used (148). Another alternative is to
use transformations of count data which are amenable
to continuous techniques.

Quantal (Binary) Data. For quantal data there ex-
ist a variety of dose—response models in the literature
based on modeling concepts from both the tolerance
distribution viewpoint and stochastic mechanism view-
point (i60). Many of these might be appropriate for
various binary endpoeints in teratology or reproduction
studies. Furthermore, for any experimental data set,
more than one of these models will fit the observed data
adequately. Thus, when it comes to estimating the risk,
i.e., the probability of the adverse response, the issue
of extrapolation will again arise for response levels be-
low the observed levels. Again, the estimates outside

the experimental dose range will be highly model de-
pendent, therefore preventing accurate estimates of
dose levels corresponding to preseribed low risk levels.
However, if the dose—response curves upward in the
low dose range, linear extrapolation below the experi-
mental range wiil provide upper bounds on-risk (159).
Again, if the data do not demonstrate upward curva-
ture, other extrapolation procedures may be required.

Experimental Design

Experimental animal studies, designed for screening
or detection of toxieity may have limited use for ex-
trapolation. In designing a2 study for extrapolation, it is
desirable to have a minimum of at least three dose levels
covering an adequate range of responses above the
background rate. Sample sizes at each dose level depend
on whether the endpoint is based on litters or fetuses
and the desired level of precision for the estimates of
response.

Interspecies Conversion

Up to this point, only the estimation of risk within
the experimental study population has been addressed.
Interspecies conversion has typically been ignored or
addressed by the use of safety factors. The determi-
nation of the size of safety factors for interspecies con-
version is not a mathematical problem, but rather one
involving biological interpretation. Guidelines for such
interpretation are discussed elsewhere (see reports on
endpoints of teratogenicity and reproductive toxicity).

Epidemiology

When dose-response information is available from an
epidemiological study, quantitative estimates of risk
may be obtained in a manner similar to animal studies.
In this case the extrapolation problem is minimized as
the exposure levels in the study group generally will be
closer to the exposure levels in the population of inter-
est. Exposure levels may not be well known, but best
estimates of exposure may be used. Multiple exposures
and confounding variables must be identified and ad-
justments made for their effects in either the design or
the analysis. Bias resulting from the selection of cases
and controls may limit the population of inference in
epidemiologic studies.

Clinical Trials

Clinical trials provide data from controlled random-
ized studies in human populations. As such, confounding
variables may be less of a problem with data from clin-
ical trials; however, the populatien of inference may be
rather restricted. Data from clinical trials may be used
for quantitative risk estimates when dose-response in-
formation exists.
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Summary

Numerous uncertainties make it difficult to evaluate
the reliability of animal experiments as predictors of
human reproductive and developmental toxicity. Hu-
man data on the various agents studied are of varying
quality and guantity, and it is possible that as additional
data become available, earlier conclusions may be mod-
ified. In addition, there are marked differences in the
response of different animal species to chemical agents
and there is no clear agreement as to which species is
likely to be the most appropriate or how many species
should be evaluated.

Reproeductive toxicity in humans is not observed for
many chemicals which affect reproduction in animals.
With the limited available information for these expo-
sures, it cannot be determined if the negative or incon-
clusive results in human studies are due to the lack of
human response to these agents, low susceptibility in
humans, lack of sufficient exposure, or inadequacies of
the studies.

While these uncertainties impede our ability to eval-
uate the reliability of animal studies as predictors of
human risk, for many agents, results from animal stud-
ies may be the only data available.

Factors to be considered when reviewing animal and
human data for quantitative and qualitative risk as-
sessment of human reproductive hazards are discussed.
Epidemiologic methods for collection of data and sta-
tistical techniques for the analysis of data are outlined
and certain guidelines provided in the hope that the
limited available data may be used effectively to assist
the prediction of the potential for risk to the human
population and to guide the conduct of needed additional
animal and human studies.
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